Diffuse Emission of Galactic High-energy Neutrinos from a Global Fit of Cosmic Rays

In the standard picture of Galactic cosmic rays, a diffuse flux of high-energy gamma rays and neutrinos is produced from inelastic collisions of cosmic-ray nuclei with the interstellar gas. The neutrino flux is a guaranteed signal for high-energy neutrino observatories such as IceCube but has not be...

Full description

Bibliographic Details
Main Authors: Georg Schwefer, Philipp Mertsch, Christopher Wiebusch
Format: Article
Language:English
Published: IOP Publishing 2023-01-01
Series:The Astrophysical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-4357/acc1e2
Description
Summary:In the standard picture of Galactic cosmic rays, a diffuse flux of high-energy gamma rays and neutrinos is produced from inelastic collisions of cosmic-ray nuclei with the interstellar gas. The neutrino flux is a guaranteed signal for high-energy neutrino observatories such as IceCube but has not been found yet. Experimental searches for this flux constitute an important test of the standard picture of Galactic cosmic rays. Both observation and nonobservation would allow important implications for the physics of cosmic-ray acceleration and transport. We present CRINGE , a new model of Galactic diffuse high-energy gamma rays and neutrinos, fitted to recent cosmic-ray data from AMS-02, DAMPE, IceTop, as well as KASCADE. We quantify the uncertainties for the predicted emission from the cosmic-ray model but also from the choice of source distribution, gas maps, and cross sections. We consider the possibility of a contribution from unresolved sources. Our model predictions exhibit significant deviations from older models. Our fiducial model is available at https://doi.org/10.5281/zenodo.7859442 https://zenodo.org/record/7859442 .
ISSN:1538-4357