Summary: | Abstract We describe the effect of the marginal deformation of the N $$ \mathcal{N} $$ = (4, 4) super-conformal (T 4) N /S N orbifold theory on a doublet of R-neutral twisted Ramond fields, in the large-N approximation. Our analysis of their dynamics explores the explicit analytic form of the genus-zero four-point function involving two R-neutral Ramond fields and two deformation operators. We compute this correlation function with two different approaches: the Lunin-Mathur path-integral technique and the stress-tensor method. From its short distance limits, we extract the OPE structure constants and the scaling dimensions of non-BPS fields appearing in the fusion. In the deformed CFT, at second order in the deformation parameter, the two-point function of the n-twisted Ramond fields is UV-divergent. We perform an appropriate regularization, together with a renormalization of the undeformed fields, obtaining finite, well-defined corrections to their two-point functions and their bare conformal weights, for n < N. The fields with maximal twist n = N remain protected from renormalization, with vanishing anomalous dimensions.
|