Emerging role of bacterial outer membrane vesicle in gastrointestinal tract

Abstract Bacteria form a highly complex ecosystem in the gastrointestinal (GI) tract. In recent years, mounting evidence has shown that bacteria can release nanoscale phospholipid bilayer particles that encapsulate nucleic acids, proteins, lipids, and other molecules. Extracellular vesicles (EVs) ar...

Full description

Bibliographic Details
Main Authors: Cheng-mei Tian, Mei-feng Yang, Hao-ming Xu, Min-zheng Zhu, Yuan Zhang, Jun Yao, Li-sheng Wang, Yu-jie Liang, De-feng Li
Format: Article
Language:English
Published: BMC 2023-04-01
Series:Gut Pathogens
Subjects:
Online Access:https://doi.org/10.1186/s13099-023-00543-2
Description
Summary:Abstract Bacteria form a highly complex ecosystem in the gastrointestinal (GI) tract. In recent years, mounting evidence has shown that bacteria can release nanoscale phospholipid bilayer particles that encapsulate nucleic acids, proteins, lipids, and other molecules. Extracellular vesicles (EVs) are secreted by microorganisms and can transport a variety of important factors, such as virulence factors, antibiotics, HGT, and defensive factors produced by host eukaryotic cells. In addition, these EVs are vital in facilitating communication between microbiota and the host. Therefore, bacterial EVs play a crucial role in maintaining the GI tract’s health and proper functioning. In this review, we outlined the structure and composition of bacterial EVs. Additionally, we highlighted the critical role that bacterial EVs play in immune regulation and in maintaining the balance of the gut microbiota. To further elucidate progress in the field of intestinal research and to provide a reference for future EV studies, we also discussed the clinical and pharmacological potential of bacterial EVs, as well as the necessary efforts required to understand the mechanisms of interaction between bacterial EVs and gut pathogenesis.
ISSN:1757-4749