Search Heuristics and Constructive Algorithms for Maximally Idempotent Integers

Previous work established the set of square-free integers <i>n</i> with at least one factorization <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo>&l...

Full description

Bibliographic Details
Main Author: Barry Fagin
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Information
Subjects:
Online Access:https://www.mdpi.com/2078-2489/12/8/305
_version_ 1797523516824748032
author Barry Fagin
author_facet Barry Fagin
author_sort Barry Fagin
collection DOAJ
description Previous work established the set of square-free integers <i>n</i> with at least one factorization <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mover accent="true"><mi>p</mi><mo stretchy="false">¯</mo></mover><mover accent="true"><mi>q</mi><mo stretchy="false">¯</mo></mover></mrow></semantics></math></inline-formula> for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>q</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> are valid RSA keys, whether they are prime or composite. These integers are exactly those with the property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>∣</mo><mrow><mo>(</mo><mover accent="true"><mi>p</mi><mo stretchy="false">¯</mo></mover><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mover accent="true"><mi>q</mi><mo stretchy="false">¯</mo></mover><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> is the Carmichael totient function. We refer to these integers as <i>idempotent</i>, because <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∀</mo><mi>a</mi><mo>∈</mo><msub><mi>Z</mi><mi>n</mi></msub><mo>,</mo><msup><mi>a</mi><mrow><mi>k</mi><mrow><mo>(</mo><mover accent="true"><mi>p</mi><mo stretchy="false">¯</mo></mover><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mover accent="true"><mi>q</mi><mo stretchy="false">¯</mo></mover><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></msup><munder><mo>≡</mo><mi>n</mi></munder><mi>a</mi></mrow></semantics></math></inline-formula> for any positive integer <i>k</i>. This set was initially known to contain only the semiprimes, and later expanded to include some of the Carmichael numbers. Recent work by the author gave the explicit formulation for the set, showing that the set includes numbers that are neither semiprimes nor Carmichael numbers. Numbers in this last category had not been previously analyzed in the literature. While only the semiprimes have useful cryptographic properties, idempotent integers are deserving of study in their own right as they lie at the border of hard problems in number theory and computer science. Some idempotent integers, the <i>maximally idempotent</i> integers, have the property that all their factorizations are idempotent. We discuss their structure here, heuristics to assist in finding them, and algorithms from graph theory that can be used to construct examples of arbitrary size.
first_indexed 2024-03-10T08:44:06Z
format Article
id doaj.art-9fbbb87b59d4478a8e8665e15cef3902
institution Directory Open Access Journal
issn 2078-2489
language English
last_indexed 2024-03-10T08:44:06Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Information
spelling doaj.art-9fbbb87b59d4478a8e8665e15cef39022023-11-22T08:05:51ZengMDPI AGInformation2078-24892021-07-0112830510.3390/info12080305Search Heuristics and Constructive Algorithms for Maximally Idempotent IntegersBarry Fagin0Department of Computer Science, US Air Force Academy, El Paso County, CO 80840, USAPrevious work established the set of square-free integers <i>n</i> with at least one factorization <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>=</mo><mover accent="true"><mi>p</mi><mo stretchy="false">¯</mo></mover><mover accent="true"><mi>q</mi><mo stretchy="false">¯</mo></mover></mrow></semantics></math></inline-formula> for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>p</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>q</mi><mo stretchy="false">¯</mo></mover></semantics></math></inline-formula> are valid RSA keys, whether they are prime or composite. These integers are exactly those with the property <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>∣</mo><mrow><mo>(</mo><mover accent="true"><mi>p</mi><mo stretchy="false">¯</mo></mover><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mover accent="true"><mi>q</mi><mo stretchy="false">¯</mo></mover><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> is the Carmichael totient function. We refer to these integers as <i>idempotent</i>, because <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∀</mo><mi>a</mi><mo>∈</mo><msub><mi>Z</mi><mi>n</mi></msub><mo>,</mo><msup><mi>a</mi><mrow><mi>k</mi><mrow><mo>(</mo><mover accent="true"><mi>p</mi><mo stretchy="false">¯</mo></mover><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mover accent="true"><mi>q</mi><mo stretchy="false">¯</mo></mover><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>1</mn></mrow></msup><munder><mo>≡</mo><mi>n</mi></munder><mi>a</mi></mrow></semantics></math></inline-formula> for any positive integer <i>k</i>. This set was initially known to contain only the semiprimes, and later expanded to include some of the Carmichael numbers. Recent work by the author gave the explicit formulation for the set, showing that the set includes numbers that are neither semiprimes nor Carmichael numbers. Numbers in this last category had not been previously analyzed in the literature. While only the semiprimes have useful cryptographic properties, idempotent integers are deserving of study in their own right as they lie at the border of hard problems in number theory and computer science. Some idempotent integers, the <i>maximally idempotent</i> integers, have the property that all their factorizations are idempotent. We discuss their structure here, heuristics to assist in finding them, and algorithms from graph theory that can be used to construct examples of arbitrary size.https://www.mdpi.com/2078-2489/12/8/305carmichael totient functionnumber theoryRSAcomputational number theoryfactorizations
spellingShingle Barry Fagin
Search Heuristics and Constructive Algorithms for Maximally Idempotent Integers
Information
carmichael totient function
number theory
RSA
computational number theory
factorizations
title Search Heuristics and Constructive Algorithms for Maximally Idempotent Integers
title_full Search Heuristics and Constructive Algorithms for Maximally Idempotent Integers
title_fullStr Search Heuristics and Constructive Algorithms for Maximally Idempotent Integers
title_full_unstemmed Search Heuristics and Constructive Algorithms for Maximally Idempotent Integers
title_short Search Heuristics and Constructive Algorithms for Maximally Idempotent Integers
title_sort search heuristics and constructive algorithms for maximally idempotent integers
topic carmichael totient function
number theory
RSA
computational number theory
factorizations
url https://www.mdpi.com/2078-2489/12/8/305
work_keys_str_mv AT barryfagin searchheuristicsandconstructivealgorithmsformaximallyidempotentintegers