Cohen-Macaulay and (S<sub>2</sub>) Properties of the Second Power of Squarefree Monomial Ideals
We show that Cohen-Macaulay and (S<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>) properties are equivalent for the second power of a...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-07-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/8/684 |
Summary: | We show that Cohen-Macaulay and (S<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>) properties are equivalent for the second power of an edge ideal. We give an example of a Gorenstein squarefree monomial ideal <i>I</i> such that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mo>/</mo> <msup> <mi>I</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula> satisfies the Serre condition (S<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>), but is not Cohen-Macaulay. |
---|---|
ISSN: | 2227-7390 |