Cohen-Macaulay and (S<sub>2</sub>) Properties of the Second Power of Squarefree Monomial Ideals

We show that Cohen-Macaulay and (S<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>) properties are equivalent for the second power of a...

Full description

Bibliographic Details
Main Authors: Do Trong Hoang, Giancarlo Rinaldo, Naoki Terai
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/8/684
_version_ 1811287891360350208
author Do Trong Hoang
Giancarlo Rinaldo
Naoki Terai
author_facet Do Trong Hoang
Giancarlo Rinaldo
Naoki Terai
author_sort Do Trong Hoang
collection DOAJ
description We show that Cohen-Macaulay and (S<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>) properties are equivalent for the second power of an edge ideal. We give an example of a Gorenstein squarefree monomial ideal <i>I</i> such that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mo>/</mo> <msup> <mi>I</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula> satisfies the Serre condition (S<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>), but is not Cohen-Macaulay.
first_indexed 2024-04-13T03:26:27Z
format Article
id doaj.art-9fc5732e046843e6b8791ff73719b299
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-04-13T03:26:27Z
publishDate 2019-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-9fc5732e046843e6b8791ff73719b2992022-12-22T03:04:38ZengMDPI AGMathematics2227-73902019-07-017868410.3390/math7080684math7080684Cohen-Macaulay and (S<sub>2</sub>) Properties of the Second Power of Squarefree Monomial IdealsDo Trong Hoang0Giancarlo Rinaldo1Naoki Terai2Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi 10307, VietnamDepartment of Mathematics, University of Trento, via Sommarive, 14, 38123 Povo (Trento), ItalyFaculty of Education, Saga University, Saga 840-8502, JapanWe show that Cohen-Macaulay and (S<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>) properties are equivalent for the second power of an edge ideal. We give an example of a Gorenstein squarefree monomial ideal <i>I</i> such that <inline-formula> <math display="inline"> <semantics> <mrow> <mi>S</mi> <mo>/</mo> <msup> <mi>I</mi> <mn>2</mn> </msup> </mrow> </semantics> </math> </inline-formula> satisfies the Serre condition (S<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>2</mn> </msub> </semantics> </math> </inline-formula>), but is not Cohen-Macaulay.https://www.mdpi.com/2227-7390/7/8/684Stanley-Reisner idealedge idealCohen-Macaulay(S2) condition
spellingShingle Do Trong Hoang
Giancarlo Rinaldo
Naoki Terai
Cohen-Macaulay and (S<sub>2</sub>) Properties of the Second Power of Squarefree Monomial Ideals
Mathematics
Stanley-Reisner ideal
edge ideal
Cohen-Macaulay
(S2) condition
title Cohen-Macaulay and (S<sub>2</sub>) Properties of the Second Power of Squarefree Monomial Ideals
title_full Cohen-Macaulay and (S<sub>2</sub>) Properties of the Second Power of Squarefree Monomial Ideals
title_fullStr Cohen-Macaulay and (S<sub>2</sub>) Properties of the Second Power of Squarefree Monomial Ideals
title_full_unstemmed Cohen-Macaulay and (S<sub>2</sub>) Properties of the Second Power of Squarefree Monomial Ideals
title_short Cohen-Macaulay and (S<sub>2</sub>) Properties of the Second Power of Squarefree Monomial Ideals
title_sort cohen macaulay and s sub 2 sub properties of the second power of squarefree monomial ideals
topic Stanley-Reisner ideal
edge ideal
Cohen-Macaulay
(S2) condition
url https://www.mdpi.com/2227-7390/7/8/684
work_keys_str_mv AT dotronghoang cohenmacaulayandssub2subpropertiesofthesecondpowerofsquarefreemonomialideals
AT giancarlorinaldo cohenmacaulayandssub2subpropertiesofthesecondpowerofsquarefreemonomialideals
AT naokiterai cohenmacaulayandssub2subpropertiesofthesecondpowerofsquarefreemonomialideals