Differential Physiological Response and Antioxidant Activity Relative to High-Power Micro-Waves Irradiation and Temperature of Tomato Sprouts

Among the various types of stress, microwaves and temperature can induce major impacts on plant growth. There is information describing the thermal impact of microwaves on living organisms, but it is necessary to segregate the warming effect and direct impact of microwaves irradiation on plants. It...

Full description

Bibliographic Details
Main Authors: Audrius Radzevičius, Sandra Sakalauskienė, Mindaugas Dagys, Rimantas Simniškis, Rasa Karklelienė, Danguolė Juškevičienė, Roma Račkienė, Aušra Brazaitytė
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Agriculture
Subjects:
Online Access:https://www.mdpi.com/2077-0472/12/3/422
Description
Summary:Among the various types of stress, microwaves and temperature can induce major impacts on plant growth. There is information describing the thermal impact of microwaves on living organisms, but it is necessary to segregate the warming effect and direct impact of microwaves irradiation on plants. It was detected that High Power Microwaves (HPM) (9.3 GHz) and elevated temperature exposure upon tomato seeds and sprouts in primary ontogenetic stages showed a slightly incentive effect on plant-growing indicators such as dry mass, fresh mass, plants height, and assimilation area. Such a positive effect on plant growing parameters could be related to saccharides distribution by microwaves in seeds or plants and nutrients mobilization. Moreover, tomato plants (+R) and seeds (R) irradiation significantly reduced the content of non-structural carbohydrates (raphinose, glucose, fructose, and sucrose). Obtained results confirm that a common plant acclimatization response to various environmental elements is the concentration of secondary metabolites and antioxidants.
ISSN:2077-0472