On the unique continuation property for a nonlinear dispersive system
We solve the following problem: If $(u,\,v)=(u(x,\,t),\,v(x,\,t))$ is a solution of the Dispersive Coupled System with $t_{1}<t_{2}$ which are sufficiently smooth and such that: $\operatorname{supp}u(\,.\,,\,t_{j})\subset (a,\,b)\,$ and $\,\operatorname{supp}v(\,.\,,\, t_{j})\subset (a,\,b),\,-\,...
Hlavní autoři: | , |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
University of Szeged
2005-06-01
|
Edice: | Electronic Journal of Qualitative Theory of Differential Equations |
On-line přístup: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=222 |
Shrnutí: | We solve the following problem: If $(u,\,v)=(u(x,\,t),\,v(x,\,t))$ is a solution of the Dispersive Coupled System with $t_{1}<t_{2}$ which are sufficiently smooth and such that: $\operatorname{supp}u(\,.\,,\,t_{j})\subset (a,\,b)\,$ and $\,\operatorname{supp}v(\,.\,,\, t_{j})\subset (a,\,b),\,-\,\infty<a<b<\infty ,\,$ $j=1,\,2.\,$
Then $u\equiv 0$ and $v\equiv 0.$ |
---|---|
ISSN: | 1417-3875 |