Long-Term Analysis of Sea Ice Drift in the Western Ross Sea, Antarctica, at High and Low Spatial Resolution

The Ross Sea region, including three main polynya areas in McMurdo Sound, Terra Nova Bay, and in front of the Ross Ice Shelf, has experienced a significant increase in sea ice extent in the first four decades of satellite observations. Here, we use Co-Registration of Optically Sensed Images and Corr...

Full description

Bibliographic Details
Main Authors: Usama Farooq, Wolfgang Rack, Adrian McDonald, Stephen Howell
Format: Article
Language:English
Published: MDPI AG 2020-04-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/9/1402
Description
Summary:The Ross Sea region, including three main polynya areas in McMurdo Sound, Terra Nova Bay, and in front of the Ross Ice Shelf, has experienced a significant increase in sea ice extent in the first four decades of satellite observations. Here, we use Co-Registration of Optically Sensed Images and Correlation (COSI-Corr) to estimate 894 high-resolution sea ice motion fields of the Western Ross Sea in order to explore ice-atmosphere interactions based on sequential high-resolution Advanced Synthetic Aperture Radar (ASAR) images from the Envisat satellite acquired between 2002–2012. Validation of output motion vectors with manually drawn vectors for 24 image pairs show Pearson correlation coefficients of 0.92 ± 0.09 with a mean deviation in direction of −3.17 ± 6.48 degrees. The high-resolution vectors were also validated against the Environment and Climate Change Canada sea ice motion tracking algorithm, resulting in correlation coefficients of 0.84 ± 0.20 and the mean deviation in the direction of −0.04 ± 17.39 degrees. A total of 480 one-day separated velocity vector fields have been compared to an available NSIDC low-resolution sea ice motion vector product, showing much lower correlations and high directional differences. The high-resolution product is able to better identify short-term and spatial variations, whereas the low-resolution product underestimates the actual sea ice velocities by 47% in this important near-coastal region. The large-scale pattern of sea ice drift over the full time period is similar in both products. Improved image coverage is still desired to capture drift variations shorter than 24 h.
ISSN:2072-4292