Convergence on reduced aggression through shared behavioral traits in multiple populations of Astyanax mexicanus

Abstract Background Aggression is observed across the animal kingdom, and benefits animals in a number of ways to increase fitness and promote survival. While aggressive behaviors vary widely across populations and can evolve as an adaptation to a particular environment, the complexity of aggressive...

Full description

Bibliographic Details
Main Authors: Roberto Rodriguez-Morales, Paola Gonzalez-Lerma, Anders Yuiska, Ji Heon Han, Yolanda Guerra, Lina Crisostomo, Alex C. Keene, Erik R. Duboue, Johanna E. Kowalko
Format: Article
Language:English
Published: BMC 2022-10-01
Series:BMC Ecology and Evolution
Subjects:
Online Access:https://doi.org/10.1186/s12862-022-02069-8
Description
Summary:Abstract Background Aggression is observed across the animal kingdom, and benefits animals in a number of ways to increase fitness and promote survival. While aggressive behaviors vary widely across populations and can evolve as an adaptation to a particular environment, the complexity of aggressive behaviors presents a challenge to studying the evolution of aggression. The Mexican tetra, Astyanax mexicanus exists as an aggressive river-dwelling surface form and multiple populations of a blind cave form, some of which exhibit reduced aggression, providing the opportunity to investigate how evolution shapes aggressive behaviors. Results To define how aggressive behaviors evolve, we performed a high-resolution analysis of multiple social behaviors that occur during aggressive interactions in A. mexicanus. We found that many of the aggression-associated behaviors observed in surface-surface aggressive encounters were reduced or lost in Pachón cavefish. Interestingly, one behavior, circling, was observed more often in cavefish, suggesting evolution of a shift in the types of social behaviors exhibited by cavefish. Further, detailed analysis revealed substantive differences in aggression-related sub-behaviors in independently evolved cavefish populations, suggesting independent evolution of reduced aggression between cave populations. We found that many aggressive behaviors are still present when surface fish fight in the dark, suggesting that these reductions in aggression-associated and escape-associated behaviors in cavefish are likely independent of loss of vision in this species. Further, levels of aggression within populations were largely independent of type of opponent (cave vs. surface) or individual stress levels, measured through quantifying stress-like behaviors, suggesting these behaviors are hardwired and not reflective of population-specific changes in other cave-evolved traits. Conclusion These results reveal that loss of aggression in cavefish evolved through the loss of multiple aggression-associated behaviors and raise the possibility that independent genetic mechanisms underlie changes in each behavior within populations and across populations. Taken together, these findings reveal the complexity of evolution of social behaviors and establish A. mexicanus as a model for investigating the evolutionary and genetic basis of aggressive behavior.
ISSN:2730-7182