The collective burst mechanism of angular jumps in liquid water
The collective nature of reorientational dynamics in water remains poorly understood. Here, the authors show that large angular fluctuations require a highly cooperative dynamics involving correlated motion of many water molecules in the hydrogen-bond network that form spatially connected clusters.
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-03-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-023-37069-9 |
Summary: | The collective nature of reorientational dynamics in water remains poorly understood. Here, the authors show that large angular fluctuations require a highly cooperative dynamics involving correlated motion of many water molecules in the hydrogen-bond network that form spatially connected clusters. |
---|---|
ISSN: | 2041-1723 |