Autonomous healing by vascular networks: tracking of cracks interaction by Ultrasounds and Acoustic Emission

The tracking of healing on concrete slabs where dense crack patterns are formed under bending is reported using Acoustic Emission (AE) and Ultrasound Pulse Velocity (UPV). Additively manufactured polymeric networks are designed to distribute a polyurethane agent through capillary actions and under p...

Full description

Bibliographic Details
Main Authors: Vangansbeke Eva, Shields Yasmina, De Belie Nele, Van Tittelboom Kim, Tsangouri Eleni
Format: Article
Language:English
Published: EDP Sciences 2023-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2023/05/matecconf_smartincs2023_04003.pdf
Description
Summary:The tracking of healing on concrete slabs where dense crack patterns are formed under bending is reported using Acoustic Emission (AE) and Ultrasound Pulse Velocity (UPV). Additively manufactured polymeric networks are designed to distribute a polyurethane agent through capillary actions and under pressure to the open cracks, formed in the slabs. It is shown that the crack pattern is controlled by the geometry of the vascular networks that are positioned near the steel reinforcement. The activation of both conventional linear and interlinked web-shaped networks is monitored by AE, however in both cases the load at which the initial cracks form is lower in series with embedded networks compared to the reference series, an indication of an overall weakening effect. The area where the healing agent circulates is larger (300x400 mm2) than past tests on beams, but only local healing is evident by UPV mapping. An indirect proof of cracks filling with stiffened agent is provided by the AE pencil-lead breaking test, as the amplitude recovery after healing can be linked to crack closure. This preliminary work evaluates the design of 3D printed vascular networks, but also explores the potential of AE and UPV as inspection tools in healing studies.
ISSN:2261-236X