Singular Behavior of the Dark Universe under the Effect of Thermal Radiation in Curved Spacetime

We consider the late-time accelerated universe in the Friedmann–Robertson–Walker (FRW) spacetime with a nonzero curvature, and investigate cosmological models when the cosmic fluid is taken to be inhomogeneous and viscous (bulk viscous), coupled to dark matter. We consider the influence from thermal...

Full description

Bibliographic Details
Main Authors: Iver Brevik, Alexander V. Timoshkin
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/2/257
Description
Summary:We consider the late-time accelerated universe in the Friedmann–Robertson–Walker (FRW) spacetime with a nonzero curvature, and investigate cosmological models when the cosmic fluid is taken to be inhomogeneous and viscous (bulk viscous), coupled to dark matter. We consider the influence from thermal effects caused by Hawking radiation on the formation of singularities of various classified types, within a finite time. It is shown that under the influence of Hawking radiation, the time of formulation of a singularity and the nature of the singularity itself can change. It is also shown that by jointly taking into account radiation, viscosity, and space curvature, one can obtain a singularity-free universe. The symmetry properties of this kind of theory lie in the assumption about spatial isotropy. The spatial isotropy is also reflected in our use of a bulk instead of a shear viscosity.
ISSN:2073-8994