On representation of semigroups of inclusion hyperspaces

Given a group $X$ we study the algebraic structure of the compact right-topological semigroup $G(X)$ consisting of inclusion hyperspaces on $X$. This semigroup contains the semigroup $\lambda(X)$ of maximal linked systems as a closed subsemigroup. We construct a faithful representation of the semigr...

Full description

Bibliographic Details
Main Author: V. M. Gavrylkiv
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2013-01-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Online Access:http://journals.pu.if.ua/index.php/cmp/article/view/36
_version_ 1818879160092721152
author V. M. Gavrylkiv
author_facet V. M. Gavrylkiv
author_sort V. M. Gavrylkiv
collection DOAJ
description Given a group $X$ we study the algebraic structure of the compact right-topological semigroup $G(X)$ consisting of inclusion hyperspaces on $X$. This semigroup contains the semigroup $\lambda(X)$ of maximal linked systems as a closed subsemigroup. We construct a faithful representation of the semigroups $G(X)$ and $\lambda(X)$ in the semigroup $\mathbf P(X)^{\mathbf P(X)}$ of all self-maps of the power-set $\mathbf P(X)$. Using this representation we prove that each minimal left ideal of $\lambda(X)$ is topologically isomorphic to a minimal left ideal of the semigroup $\mathbf{pT}^{\mathbf{pT}}$, where by $\mathbf{pT}$ we denote the family of pretwin subsets of $X$.
first_indexed 2024-12-19T14:25:39Z
format Article
id doaj.art-9ffa8308085949888467693191e159a5
institution Directory Open Access Journal
issn 2075-9827
2313-0210
language English
last_indexed 2024-12-19T14:25:39Z
publishDate 2013-01-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-9ffa8308085949888467693191e159a52022-12-21T20:17:37ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102013-01-0121243410.15330/cmp.2.1.24-3436On representation of semigroups of inclusion hyperspacesV. M. Gavrylkiv0Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, UkraineGiven a group $X$ we study the algebraic structure of the compact right-topological semigroup $G(X)$ consisting of inclusion hyperspaces on $X$. This semigroup contains the semigroup $\lambda(X)$ of maximal linked systems as a closed subsemigroup. We construct a faithful representation of the semigroups $G(X)$ and $\lambda(X)$ in the semigroup $\mathbf P(X)^{\mathbf P(X)}$ of all self-maps of the power-set $\mathbf P(X)$. Using this representation we prove that each minimal left ideal of $\lambda(X)$ is topologically isomorphic to a minimal left ideal of the semigroup $\mathbf{pT}^{\mathbf{pT}}$, where by $\mathbf{pT}$ we denote the family of pretwin subsets of $X$.http://journals.pu.if.ua/index.php/cmp/article/view/36
spellingShingle V. M. Gavrylkiv
On representation of semigroups of inclusion hyperspaces
Karpatsʹkì Matematičnì Publìkacìï
title On representation of semigroups of inclusion hyperspaces
title_full On representation of semigroups of inclusion hyperspaces
title_fullStr On representation of semigroups of inclusion hyperspaces
title_full_unstemmed On representation of semigroups of inclusion hyperspaces
title_short On representation of semigroups of inclusion hyperspaces
title_sort on representation of semigroups of inclusion hyperspaces
url http://journals.pu.if.ua/index.php/cmp/article/view/36
work_keys_str_mv AT vmgavrylkiv onrepresentationofsemigroupsofinclusionhyperspaces