A Divide-and-Conquer Approach to Dicke State Preparation

We present a divide-and-conquer approach to deterministically prepare Dicke states <inline-formula><tex-math notation="LaTeX">$|D^{n}_{k}\rangle$</tex-math></inline-formula> (i.e., equal-weight superpositions of all <inline-formula><tex-math notation="...

Full description

Bibliographic Details
Main Authors: Shamminuj Aktar, Andreas Bartschi, Abdel-Hameed A. Badawy, Stephan Eidenbenz
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Transactions on Quantum Engineering
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9774323/
_version_ 1818536101524013056
author Shamminuj Aktar
Andreas Bartschi
Abdel-Hameed A. Badawy
Stephan Eidenbenz
author_facet Shamminuj Aktar
Andreas Bartschi
Abdel-Hameed A. Badawy
Stephan Eidenbenz
author_sort Shamminuj Aktar
collection DOAJ
description We present a divide-and-conquer approach to deterministically prepare Dicke states <inline-formula><tex-math notation="LaTeX">$|D^{n}_{k}\rangle$</tex-math></inline-formula> (i.e., equal-weight superpositions of all <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-qubit states with Hamming weight <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula>) on quantum computers. In an experimental evaluation for up to <inline-formula><tex-math notation="LaTeX">$n=6$</tex-math></inline-formula> qubits on IBM Quantum Sydney and Montreal devices, we achieve significantly higher state fidelity compared to previous results. The fidelity gains are achieved through several techniques: our circuits first &#x201C;divide&#x201D; the Hamming weight between blocks of <inline-formula><tex-math notation="LaTeX">$n/2$</tex-math></inline-formula> qubits, and then &#x201C;conquer&#x201D; those blocks with improved versions of Dicke state unitaries (B&#x00E4;rtschi <italic>et al.</italic> FCT&#x2019;2019). Due to the sparse connectivity on IBM&#x2019;s heavy-hex-architectures, these circuits are implemented for linear nearest neighbor topologies. Further gains in (estimating) the state fidelity are due to our use of measurement error mitigation and hardware progress.
first_indexed 2024-12-11T18:33:38Z
format Article
id doaj.art-a00d68e11f92491cae5c4cbf79d20050
institution Directory Open Access Journal
issn 2689-1808
language English
last_indexed 2024-12-11T18:33:38Z
publishDate 2022-01-01
publisher IEEE
record_format Article
series IEEE Transactions on Quantum Engineering
spelling doaj.art-a00d68e11f92491cae5c4cbf79d200502022-12-22T00:54:51ZengIEEEIEEE Transactions on Quantum Engineering2689-18082022-01-01311610.1109/TQE.2022.31745479774323A Divide-and-Conquer Approach to Dicke State PreparationShamminuj Aktar0https://orcid.org/0000-0001-5587-7406Andreas Bartschi1https://orcid.org/0000-0002-9049-0984Abdel-Hameed A. Badawy2https://orcid.org/0000-0001-8027-1449Stephan Eidenbenz3https://orcid.org/0000-0002-2628-1854Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM, USACCS-3 Information Sciences, Los Alamos National Laboratory, Los Alamos, NM, USAKlipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM, USACCS-3 Information Sciences, Los Alamos National Laboratory, Los Alamos, NM, USAWe present a divide-and-conquer approach to deterministically prepare Dicke states <inline-formula><tex-math notation="LaTeX">$|D^{n}_{k}\rangle$</tex-math></inline-formula> (i.e., equal-weight superpositions of all <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-qubit states with Hamming weight <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula>) on quantum computers. In an experimental evaluation for up to <inline-formula><tex-math notation="LaTeX">$n=6$</tex-math></inline-formula> qubits on IBM Quantum Sydney and Montreal devices, we achieve significantly higher state fidelity compared to previous results. The fidelity gains are achieved through several techniques: our circuits first &#x201C;divide&#x201D; the Hamming weight between blocks of <inline-formula><tex-math notation="LaTeX">$n/2$</tex-math></inline-formula> qubits, and then &#x201C;conquer&#x201D; those blocks with improved versions of Dicke state unitaries (B&#x00E4;rtschi <italic>et al.</italic> FCT&#x2019;2019). Due to the sparse connectivity on IBM&#x2019;s heavy-hex-architectures, these circuits are implemented for linear nearest neighbor topologies. Further gains in (estimating) the state fidelity are due to our use of measurement error mitigation and hardware progress.https://ieeexplore.ieee.org/document/9774323/CircuitDicke statefidelityIBM Qnoisy intermediate scale quantum (NISQ)QISKIT
spellingShingle Shamminuj Aktar
Andreas Bartschi
Abdel-Hameed A. Badawy
Stephan Eidenbenz
A Divide-and-Conquer Approach to Dicke State Preparation
IEEE Transactions on Quantum Engineering
Circuit
Dicke state
fidelity
IBM Q
noisy intermediate scale quantum (NISQ)
QISKIT
title A Divide-and-Conquer Approach to Dicke State Preparation
title_full A Divide-and-Conquer Approach to Dicke State Preparation
title_fullStr A Divide-and-Conquer Approach to Dicke State Preparation
title_full_unstemmed A Divide-and-Conquer Approach to Dicke State Preparation
title_short A Divide-and-Conquer Approach to Dicke State Preparation
title_sort divide and conquer approach to dicke state preparation
topic Circuit
Dicke state
fidelity
IBM Q
noisy intermediate scale quantum (NISQ)
QISKIT
url https://ieeexplore.ieee.org/document/9774323/
work_keys_str_mv AT shamminujaktar adivideandconquerapproachtodickestatepreparation
AT andreasbartschi adivideandconquerapproachtodickestatepreparation
AT abdelhameedabadawy adivideandconquerapproachtodickestatepreparation
AT stephaneidenbenz adivideandconquerapproachtodickestatepreparation
AT shamminujaktar divideandconquerapproachtodickestatepreparation
AT andreasbartschi divideandconquerapproachtodickestatepreparation
AT abdelhameedabadawy divideandconquerapproachtodickestatepreparation
AT stephaneidenbenz divideandconquerapproachtodickestatepreparation