A Divide-and-Conquer Approach to Dicke State Preparation
We present a divide-and-conquer approach to deterministically prepare Dicke states <inline-formula><tex-math notation="LaTeX">$|D^{n}_{k}\rangle$</tex-math></inline-formula> (i.e., equal-weight superpositions of all <inline-formula><tex-math notation="...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2022-01-01
|
Series: | IEEE Transactions on Quantum Engineering |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9774323/ |
_version_ | 1818536101524013056 |
---|---|
author | Shamminuj Aktar Andreas Bartschi Abdel-Hameed A. Badawy Stephan Eidenbenz |
author_facet | Shamminuj Aktar Andreas Bartschi Abdel-Hameed A. Badawy Stephan Eidenbenz |
author_sort | Shamminuj Aktar |
collection | DOAJ |
description | We present a divide-and-conquer approach to deterministically prepare Dicke states <inline-formula><tex-math notation="LaTeX">$|D^{n}_{k}\rangle$</tex-math></inline-formula> (i.e., equal-weight superpositions of all <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-qubit states with Hamming weight <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula>) on quantum computers. In an experimental evaluation for up to <inline-formula><tex-math notation="LaTeX">$n=6$</tex-math></inline-formula> qubits on IBM Quantum Sydney and Montreal devices, we achieve significantly higher state fidelity compared to previous results. The fidelity gains are achieved through several techniques: our circuits first “divide” the Hamming weight between blocks of <inline-formula><tex-math notation="LaTeX">$n/2$</tex-math></inline-formula> qubits, and then “conquer” those blocks with improved versions of Dicke state unitaries (Bärtschi <italic>et al.</italic> FCT’2019). Due to the sparse connectivity on IBM’s heavy-hex-architectures, these circuits are implemented for linear nearest neighbor topologies. Further gains in (estimating) the state fidelity are due to our use of measurement error mitigation and hardware progress. |
first_indexed | 2024-12-11T18:33:38Z |
format | Article |
id | doaj.art-a00d68e11f92491cae5c4cbf79d20050 |
institution | Directory Open Access Journal |
issn | 2689-1808 |
language | English |
last_indexed | 2024-12-11T18:33:38Z |
publishDate | 2022-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Transactions on Quantum Engineering |
spelling | doaj.art-a00d68e11f92491cae5c4cbf79d200502022-12-22T00:54:51ZengIEEEIEEE Transactions on Quantum Engineering2689-18082022-01-01311610.1109/TQE.2022.31745479774323A Divide-and-Conquer Approach to Dicke State PreparationShamminuj Aktar0https://orcid.org/0000-0001-5587-7406Andreas Bartschi1https://orcid.org/0000-0002-9049-0984Abdel-Hameed A. Badawy2https://orcid.org/0000-0001-8027-1449Stephan Eidenbenz3https://orcid.org/0000-0002-2628-1854Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM, USACCS-3 Information Sciences, Los Alamos National Laboratory, Los Alamos, NM, USAKlipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM, USACCS-3 Information Sciences, Los Alamos National Laboratory, Los Alamos, NM, USAWe present a divide-and-conquer approach to deterministically prepare Dicke states <inline-formula><tex-math notation="LaTeX">$|D^{n}_{k}\rangle$</tex-math></inline-formula> (i.e., equal-weight superpositions of all <inline-formula><tex-math notation="LaTeX">$n$</tex-math></inline-formula>-qubit states with Hamming weight <inline-formula><tex-math notation="LaTeX">$k$</tex-math></inline-formula>) on quantum computers. In an experimental evaluation for up to <inline-formula><tex-math notation="LaTeX">$n=6$</tex-math></inline-formula> qubits on IBM Quantum Sydney and Montreal devices, we achieve significantly higher state fidelity compared to previous results. The fidelity gains are achieved through several techniques: our circuits first “divide” the Hamming weight between blocks of <inline-formula><tex-math notation="LaTeX">$n/2$</tex-math></inline-formula> qubits, and then “conquer” those blocks with improved versions of Dicke state unitaries (Bärtschi <italic>et al.</italic> FCT’2019). Due to the sparse connectivity on IBM’s heavy-hex-architectures, these circuits are implemented for linear nearest neighbor topologies. Further gains in (estimating) the state fidelity are due to our use of measurement error mitigation and hardware progress.https://ieeexplore.ieee.org/document/9774323/CircuitDicke statefidelityIBM Qnoisy intermediate scale quantum (NISQ)QISKIT |
spellingShingle | Shamminuj Aktar Andreas Bartschi Abdel-Hameed A. Badawy Stephan Eidenbenz A Divide-and-Conquer Approach to Dicke State Preparation IEEE Transactions on Quantum Engineering Circuit Dicke state fidelity IBM Q noisy intermediate scale quantum (NISQ) QISKIT |
title | A Divide-and-Conquer Approach to Dicke State Preparation |
title_full | A Divide-and-Conquer Approach to Dicke State Preparation |
title_fullStr | A Divide-and-Conquer Approach to Dicke State Preparation |
title_full_unstemmed | A Divide-and-Conquer Approach to Dicke State Preparation |
title_short | A Divide-and-Conquer Approach to Dicke State Preparation |
title_sort | divide and conquer approach to dicke state preparation |
topic | Circuit Dicke state fidelity IBM Q noisy intermediate scale quantum (NISQ) QISKIT |
url | https://ieeexplore.ieee.org/document/9774323/ |
work_keys_str_mv | AT shamminujaktar adivideandconquerapproachtodickestatepreparation AT andreasbartschi adivideandconquerapproachtodickestatepreparation AT abdelhameedabadawy adivideandconquerapproachtodickestatepreparation AT stephaneidenbenz adivideandconquerapproachtodickestatepreparation AT shamminujaktar divideandconquerapproachtodickestatepreparation AT andreasbartschi divideandconquerapproachtodickestatepreparation AT abdelhameedabadawy divideandconquerapproachtodickestatepreparation AT stephaneidenbenz divideandconquerapproachtodickestatepreparation |