Horadam Sequences and Tridiagonal Determinants
We consider a family of particular tridiagonal matrix determinants which can represent the general second-order linear recurrence sequences. These determinants can be changed to symmetric or skew-symmetric tridiagonal determinants. To evaluate the complex factorizations of any Horadam sequence, we e...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/12/1968 |
Summary: | We consider a family of particular tridiagonal matrix determinants which can represent the general second-order linear recurrence sequences. These determinants can be changed to symmetric or skew-symmetric tridiagonal determinants. To evaluate the complex factorizations of any Horadam sequence, we evaluate the eigenvalues of some special tridiagonal matrices and their corresponding eigenvectors. We also use these determinant representations to obtain some formulas in these sequences. |
---|---|
ISSN: | 2073-8994 |