Oxytetracycline Removal with Nano Zero Valent Iron Using the Photo-oxidation Process and Optimization of Comparative Ions

Due to their rather non-degradability and the emerging genetic resistance against them, antibiotics discharged into domestic effluents pose a serious environmental hazard while the conventional biological treatment methods are not adequately efficienct in removing them. In the present study, the che...

Full description

Bibliographic Details
Main Authors: Parisa Hassanzadeh, Hossein Ganjidoust, Bita Ayati
Format: Article
Language:English
Published: Water and Wastewater Consulting Engineers Research Development 2015-12-01
Series:آب و فاضلاب
Subjects:
Online Access:http://www.wwjournal.ir/article_9411_b9d11c7989a1ce8be9c431caefd28f20.pdf
Description
Summary:Due to their rather non-degradability and the emerging genetic resistance against them, antibiotics discharged into domestic effluents pose a serious environmental hazard while the conventional biological treatment methods are not adequately efficienct in removing them. In the present study, the chemical reaction between oxytetracycline (OTC) and nano zerovalent iron (NZVI) modified by UV-A radiation was investigated. In the batch experiments, concentration of reactants, pH, UV power, and time were optimized. In this process, the UV power was 200 W and 155 mg/L OTC in an aqueous solution was degraded after 6.5 hours using 1000 mg/L of the nano-iron powder at pH 3. TOC and COD removal efficiencies of 87, 95, 85, and 89% were achieved at 290 and 348 nm, respectively. In a similar process, no organic compounds remained after 14 hours. Based on XRD analysis, FeO and FeOOH comprised the oxide layer on the surface of the nanoparticles, which had positive effects on the photocatalytic process. Changing the parameters of ORP, pH, and DO during the process caused the photocatalytic reaction to start after 3 hours. It was also found that, due to the presence of ions such as calcium, magnesium, chloride, nitrate, sulfate, and bicarbonate in sewage and surface water compositions, it is necessary to consider their mixture in the oxytetracycline elimination process while their statistical modeling using the response surface methodology also helps in the prediction ofe the effects of these ions. Data optimization results matched thos eof the model at 95% confidence level. It was found that while bicarbonate and sulfate ions had no effect on the process, chloride and nitrate ions had more negative effects than calcium and magnesium on OTC removal since they prohibit the destruction of aromatic rings.
ISSN:1024-5936
2383-0905