Summary: | We put forward a model of action-based randomization mechanisms to analyse
quantitative information flow (QIF) under generic leakage functions, and under
possibly adaptive adversaries. This model subsumes many of the QIF models
proposed so far. Our main contributions include the following: (1) we identify
mild general conditions on the leakage function under which it is possible to
derive general and significant results on adaptive QIF; (2) we contrast the
efficiency of adaptive and non-adaptive strategies, showing that the latter are
as efficient as the former in terms of length up to an expansion factor bounded
by the number of available actions; (3) we show that the maximum information
leakage over strategies, given a finite time horizon, can be expressed in terms
of a Bellman equation. This can be used to compute an optimal finite strategy
recursively, by resorting to standard methods like backward induction.
|