Browder's type strong convergence theorems for infinite families of nonexpansive mappings in Banach spaces

We prove Browder's type strong convergence theorems for infinite families of nonexpansive mappings. One of our main results is the following: let C be a bounded closed convex subset of a uniformly smooth Banach space E. Let {Tn:n∈ℕ} be an infinite family of commuting nonexpansive mapp...

Full description

Bibliographic Details
Main Author: Tomonari Suzuki
Format: Article
Language:English
Published: SpringerOpen 2006-06-01
Series:Fixed Point Theory and Applications
Online Access:http://dx.doi.org/10.1155/FPTA/2006/59692
Description
Summary:We prove Browder's type strong convergence theorems for infinite families of nonexpansive mappings. One of our main results is the following: let C be a bounded closed convex subset of a uniformly smooth Banach space E. Let {Tn:n∈ℕ} be an infinite family of commuting nonexpansive mappings on C. Let {αn} and {tn} be sequences in (0,1/2) satisfying limntn=limnαn/tnℓ=0 for ℓ∈ℕ. Fix u∈C and define a sequence {un} in C by un=(1−αn)((1−∑k=1ntnk)T1un+∑k=1ntnkTk+1un)+αnu for n∈ℕ. Then {un} converges strongly to Pu, where P is the unique sunny nonexpansive retraction from C onto ∩n=1∞F(Tn).
ISSN:1687-1820
1687-1812