Summary: | Data-intensive applications are generating massive amounts of data which is stored on cloud computing platforms where distributed file systems are utilized for storage at the back end. Most users of those applications deployed on cloud computing systems read data more often than they write. Hence, enhancing the performance of read operations is an important research issue. Prefetching and caching are used as important techniques in the context of distributed file systems to improve the performance of read operations. In this research, we introduced a novel highly relevant frequent patterns (HRFP)-based algorithm that prefetches content from the distributed file system environment and stores it in the client-side caches that are present in the same environment. We have also introduced a new replacement policy and an efficient migration technique for moving the patterns from the main memory caches to the caches present in the solid-state devices based on a new metric namely the relevancy of the patterns. According to the simulation results, the proposed approach outperformed other algorithms that have been suggested in the literature by a minimum of 15% and a maximum of 53%.
|