Embedding dual nets in affine and projective spaces
This article determines the structure of arbitrary nets (finite or infinite) whose duals may be embedded into affine or projective space. The main results are that nets whose duals may be embedded into projective space are pseudo-regulus nets and nets whose duals may be embedded into affine space ar...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sapienza Università Editrice
1994-03-01
|
Series: | Rendiconti di Matematica e delle Sue Applicazioni |
Subjects: | |
Online Access: | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(3)/483-502.pdf |
_version_ | 1797810794481582080 |
---|---|
author | N.L. JOHNSON K.S. LIN |
author_facet | N.L. JOHNSON K.S. LIN |
author_sort | N.L. JOHNSON |
collection | DOAJ |
description | This article determines the structure of arbitrary nets (finite or infinite) whose duals may be embedded into affine or projective space. The main results are that nets whose duals may be embedded into projective space are pseudo-regulus nets and nets whose duals may be embedded into affine space are 1-parallel class retractions of pseudo-regulus nets.
|
first_indexed | 2024-03-13T07:14:07Z |
format | Article |
id | doaj.art-a03847cf4e1c47bf8617e78baf19b43f |
institution | Directory Open Access Journal |
issn | 1120-7183 2532-3350 |
language | English |
last_indexed | 2024-03-13T07:14:07Z |
publishDate | 1994-03-01 |
publisher | Sapienza Università Editrice |
record_format | Article |
series | Rendiconti di Matematica e delle Sue Applicazioni |
spelling | doaj.art-a03847cf4e1c47bf8617e78baf19b43f2023-06-05T14:00:32ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33501994-03-01143483502Embedding dual nets in affine and projective spacesN.L. JOHNSON0K.S. LIN1Mathematics Dept. – University of Iowa – Iowa City – Iowa 52242National Ping Tung Institute of Commerce – 51 Min Sheng E. Road – Ping Tung – Taiwan – R.O.C.This article determines the structure of arbitrary nets (finite or infinite) whose duals may be embedded into affine or projective space. The main results are that nets whose duals may be embedded into projective space are pseudo-regulus nets and nets whose duals may be embedded into affine space are 1-parallel class retractions of pseudo-regulus nets. https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(3)/483-502.pdfnetspseudo-regulus |
spellingShingle | N.L. JOHNSON K.S. LIN Embedding dual nets in affine and projective spaces Rendiconti di Matematica e delle Sue Applicazioni nets pseudo-regulus |
title | Embedding dual nets in affine and projective spaces |
title_full | Embedding dual nets in affine and projective spaces |
title_fullStr | Embedding dual nets in affine and projective spaces |
title_full_unstemmed | Embedding dual nets in affine and projective spaces |
title_short | Embedding dual nets in affine and projective spaces |
title_sort | embedding dual nets in affine and projective spaces |
topic | nets pseudo-regulus |
url | https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(3)/483-502.pdf |
work_keys_str_mv | AT nljohnson embeddingdualnetsinaffineandprojectivespaces AT kslin embeddingdualnetsinaffineandprojectivespaces |