Embedding dual nets in affine and projective spaces

This article determines the structure of arbitrary nets (finite or infinite) whose duals may be embedded into affine or projective space. The main results are that nets whose duals may be embedded into projective space are pseudo-regulus nets and nets whose duals may be embedded into affine space ar...

Full description

Bibliographic Details
Main Authors: N.L. JOHNSON, K.S. LIN
Format: Article
Language:English
Published: Sapienza Università Editrice 1994-03-01
Series:Rendiconti di Matematica e delle Sue Applicazioni
Subjects:
Online Access:https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(3)/483-502.pdf
_version_ 1797810794481582080
author N.L. JOHNSON
K.S. LIN
author_facet N.L. JOHNSON
K.S. LIN
author_sort N.L. JOHNSON
collection DOAJ
description This article determines the structure of arbitrary nets (finite or infinite) whose duals may be embedded into affine or projective space. The main results are that nets whose duals may be embedded into projective space are pseudo-regulus nets and nets whose duals may be embedded into affine space are 1-parallel class retractions of pseudo-regulus nets.
first_indexed 2024-03-13T07:14:07Z
format Article
id doaj.art-a03847cf4e1c47bf8617e78baf19b43f
institution Directory Open Access Journal
issn 1120-7183
2532-3350
language English
last_indexed 2024-03-13T07:14:07Z
publishDate 1994-03-01
publisher Sapienza Università Editrice
record_format Article
series Rendiconti di Matematica e delle Sue Applicazioni
spelling doaj.art-a03847cf4e1c47bf8617e78baf19b43f2023-06-05T14:00:32ZengSapienza Università EditriceRendiconti di Matematica e delle Sue Applicazioni1120-71832532-33501994-03-01143483502Embedding dual nets in affine and projective spacesN.L. JOHNSON0K.S. LIN1Mathematics Dept. – University of Iowa – Iowa City – Iowa 52242National Ping Tung Institute of Commerce – 51 Min Sheng E. Road – Ping Tung – Taiwan – R.O.C.This article determines the structure of arbitrary nets (finite or infinite) whose duals may be embedded into affine or projective space. The main results are that nets whose duals may be embedded into projective space are pseudo-regulus nets and nets whose duals may be embedded into affine space are 1-parallel class retractions of pseudo-regulus nets. https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(3)/483-502.pdfnetspseudo-regulus
spellingShingle N.L. JOHNSON
K.S. LIN
Embedding dual nets in affine and projective spaces
Rendiconti di Matematica e delle Sue Applicazioni
nets
pseudo-regulus
title Embedding dual nets in affine and projective spaces
title_full Embedding dual nets in affine and projective spaces
title_fullStr Embedding dual nets in affine and projective spaces
title_full_unstemmed Embedding dual nets in affine and projective spaces
title_short Embedding dual nets in affine and projective spaces
title_sort embedding dual nets in affine and projective spaces
topic nets
pseudo-regulus
url https://www1.mat.uniroma1.it/ricerca/rendiconti/ARCHIVIO/1994(3)/483-502.pdf
work_keys_str_mv AT nljohnson embeddingdualnetsinaffineandprojectivespaces
AT kslin embeddingdualnetsinaffineandprojectivespaces