Simulation of Static Tyre–Pavement Interaction Using Two FE Models of Different Complexity
The aim of this research study was to analyse the approaches for establishing a spatial model of a radial truck tyre, based on the finite element method, in order to perform a realistic analysis of static as well as dynamic tyre–pavement interactions. A complex rubber tyre model having a large numbe...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-02-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/12/5/2388 |
_version_ | 1797475708456402944 |
---|---|
author | Tamás Király Péter Primusz Csaba Tóth |
author_facet | Tamás Király Péter Primusz Csaba Tóth |
author_sort | Tamás Király |
collection | DOAJ |
description | The aim of this research study was to analyse the approaches for establishing a spatial model of a radial truck tyre, based on the finite element method, in order to perform a realistic analysis of static as well as dynamic tyre–pavement interactions. A complex rubber tyre model having a large number of elements was formulated combining current state-of-the-art modelling techniques and, from that model, a simplified model having a smaller number of elements was derived. The complex model proved to be useful only for static loading, because of its high computational demand, while the simplified model proved to be also suitable for dynamic modelling. The two tyre models having different numbers of elements were compared by analysing the contact areas and stresses. Our results indicate that the basic idea of not changing material characteristics while simplifying the model, rebuilding only the carcass using composite shell elements, did not prove to be a satisfactory direction. The results given by the simplified model do not describe the behaviour of the radial tyre well but, rather, describe the behaviour of the diagonal tyre, regarding contact areas and stresses. On the contrary, when analysing stresses and strains in the road pavement structure, the two finite element models provided similar results in practice. Based on our comparison calculations, applying the average contact pressure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> at analysis points at a 5–8 cm depth, the contact behaviour of the finite element tyre model can be used in any elastic-layer theory-based software. |
first_indexed | 2024-03-09T20:48:48Z |
format | Article |
id | doaj.art-a03ec347e313455aa1cd07c86e7760a4 |
institution | Directory Open Access Journal |
issn | 2076-3417 |
language | English |
last_indexed | 2024-03-09T20:48:48Z |
publishDate | 2022-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Applied Sciences |
spelling | doaj.art-a03ec347e313455aa1cd07c86e7760a42023-11-23T22:39:56ZengMDPI AGApplied Sciences2076-34172022-02-01125238810.3390/app12052388Simulation of Static Tyre–Pavement Interaction Using Two FE Models of Different ComplexityTamás Király0Péter Primusz1Csaba Tóth2Jozsef Cziraki Doctoral School of Wood Sciences and Technologies, University of Sopron, 9400 Sopron, HungaryDepartment of Highway and Railway Engineering, Budapest University of Technology and Economics, 1111 Budapest, HungaryDepartment of Highway and Railway Engineering, Budapest University of Technology and Economics, 1111 Budapest, HungaryThe aim of this research study was to analyse the approaches for establishing a spatial model of a radial truck tyre, based on the finite element method, in order to perform a realistic analysis of static as well as dynamic tyre–pavement interactions. A complex rubber tyre model having a large number of elements was formulated combining current state-of-the-art modelling techniques and, from that model, a simplified model having a smaller number of elements was derived. The complex model proved to be useful only for static loading, because of its high computational demand, while the simplified model proved to be also suitable for dynamic modelling. The two tyre models having different numbers of elements were compared by analysing the contact areas and stresses. Our results indicate that the basic idea of not changing material characteristics while simplifying the model, rebuilding only the carcass using composite shell elements, did not prove to be a satisfactory direction. The results given by the simplified model do not describe the behaviour of the radial tyre well but, rather, describe the behaviour of the diagonal tyre, regarding contact areas and stresses. On the contrary, when analysing stresses and strains in the road pavement structure, the two finite element models provided similar results in practice. Based on our comparison calculations, applying the average contact pressure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>q</mi></semantics></math></inline-formula> at analysis points at a 5–8 cm depth, the contact behaviour of the finite element tyre model can be used in any elastic-layer theory-based software.https://www.mdpi.com/2076-3417/12/5/2388finite elementsrubber tyreroad pavement structurecontact pressure and stress |
spellingShingle | Tamás Király Péter Primusz Csaba Tóth Simulation of Static Tyre–Pavement Interaction Using Two FE Models of Different Complexity Applied Sciences finite elements rubber tyre road pavement structure contact pressure and stress |
title | Simulation of Static Tyre–Pavement Interaction Using Two FE Models of Different Complexity |
title_full | Simulation of Static Tyre–Pavement Interaction Using Two FE Models of Different Complexity |
title_fullStr | Simulation of Static Tyre–Pavement Interaction Using Two FE Models of Different Complexity |
title_full_unstemmed | Simulation of Static Tyre–Pavement Interaction Using Two FE Models of Different Complexity |
title_short | Simulation of Static Tyre–Pavement Interaction Using Two FE Models of Different Complexity |
title_sort | simulation of static tyre pavement interaction using two fe models of different complexity |
topic | finite elements rubber tyre road pavement structure contact pressure and stress |
url | https://www.mdpi.com/2076-3417/12/5/2388 |
work_keys_str_mv | AT tamaskiraly simulationofstatictyrepavementinteractionusingtwofemodelsofdifferentcomplexity AT peterprimusz simulationofstatictyrepavementinteractionusingtwofemodelsofdifferentcomplexity AT csabatoth simulationofstatictyrepavementinteractionusingtwofemodelsofdifferentcomplexity |