DETERMINATION OF STABILITY OF IMPLANTS AS AN OBJECTIVE METHOD FOR PREDICTING AND EVALUATING EFFICIENCY TREATMENT IN DENTAL IMPLANTOLOGY

This work is dedicated to stability of the dental implant in stages of osteointegration by the method of resonance frequency analysis. Mechanical stability of implant is an important parameter of a normal osteointegration. Implant stability was determined by the analysis method AnyCheck. Тhe success...

Full description

Bibliographic Details
Main Author: Dobrovolskaya O. V.
Format: Article
Language:English
Published: Ukrainian Medical Stomatological Academy 2019-11-01
Series:Вісник проблем біології і медицини
Subjects:
Online Access: https://vpbm.com.ua/upload/2019-4-1(153)/74-min.pdf
_version_ 1818229803812126720
author Dobrovolskaya O. V.
author_facet Dobrovolskaya O. V.
author_sort Dobrovolskaya O. V.
collection DOAJ
description This work is dedicated to stability of the dental implant in stages of osteointegration by the method of resonance frequency analysis. Mechanical stability of implant is an important parameter of a normal osteointegration. Implant stability was determined by the analysis method AnyCheck. Тhe success or failure of bone implants has been demonstrated to be related to the quality of the bone–implant interface which provides the support to transfer loads from the implant to the bone. New bone apposition at the bone–implant interface requires a good primary implant stability with limited micromovements at the interface; this primary stability is provided by the mechanical engagement of the implant in the bone. In facts, relative displacements between the bone and the implant above 50–150 µm can lead to fibrous bone formation, providing a very poor long-term secondary stability; secondary stability is the biologic stability provided through bone regeneration and remodeling. The necessity of limiting these so-called ‘micromovements’ has induced the setup of follow-up protocols where functional loads are applied after a prescribed period of time (3–6 months, according to the original protocol). As a general rule, devices not requiring an additional element in contact with the abutment are considered to be safer: the Periotest, AnyCheck belong to this category, while the Osstell requires screwing the magnetic peg on the top of the abutment with 10 Ncm torque, and this might affect the bone–implant interface at the early healing stage. On the other hand, no-contact device results are hampered by a lack of repeatability, since small deviations in the location of the impact point result in significant variations of results. When comparing the stability of implants in different departments of the upper and lower jaw and different protocols of loading the implants, we can draw the following conclusions: - the maximum value of implant stability is recorded after one year in all clinical groups. This fact was proved in a statistically significant increase (p <0.05) of implant stability in both groups; - the initial values of the stability of the implants on the average for both jaws do not have a significant difference with direct or delayed loading 66,8 + 4,7 IST against 63,1 +3,9 (p> 0,05); - a decrease in the implant stability factor during loading indicates that the implant is overloaded; - however, it is not advisable to use this device to verify the primary stability fact, as the instrument’s performance is not related to the prognosis of intraosseous support. This indicates that even with insufficient initial mechanical fixation of the implant with delayed loading, one can expect to improve the stability of the implant due to the biological phase of osteointegration. Therefore, AnyCheck helps to control the implant osteointegration during the implantation phase and after orthopedic treatment, in order to detect negative changes at an early stage.
first_indexed 2024-12-12T10:24:25Z
format Article
id doaj.art-a03ec78a95634d3d9e85dc32770d8e73
institution Directory Open Access Journal
issn 2077-4214
2523-4110
language English
last_indexed 2024-12-12T10:24:25Z
publishDate 2019-11-01
publisher Ukrainian Medical Stomatological Academy
record_format Article
series Вісник проблем біології і медицини
spelling doaj.art-a03ec78a95634d3d9e85dc32770d8e732022-12-22T00:27:30ZengUkrainian Medical Stomatological AcademyВісник проблем біології і медицини2077-42142523-41102019-11-011431131510.29254/2077-4214-2019-4-1-153-311-3152077-4214-2019-4-1-153-311-315DETERMINATION OF STABILITY OF IMPLANTS AS AN OBJECTIVE METHOD FOR PREDICTING AND EVALUATING EFFICIENCY TREATMENT IN DENTAL IMPLANTOLOGYDobrovolskaya O. V.0 Ukrainian medical stomatological academy This work is dedicated to stability of the dental implant in stages of osteointegration by the method of resonance frequency analysis. Mechanical stability of implant is an important parameter of a normal osteointegration. Implant stability was determined by the analysis method AnyCheck. Тhe success or failure of bone implants has been demonstrated to be related to the quality of the bone–implant interface which provides the support to transfer loads from the implant to the bone. New bone apposition at the bone–implant interface requires a good primary implant stability with limited micromovements at the interface; this primary stability is provided by the mechanical engagement of the implant in the bone. In facts, relative displacements between the bone and the implant above 50–150 µm can lead to fibrous bone formation, providing a very poor long-term secondary stability; secondary stability is the biologic stability provided through bone regeneration and remodeling. The necessity of limiting these so-called ‘micromovements’ has induced the setup of follow-up protocols where functional loads are applied after a prescribed period of time (3–6 months, according to the original protocol). As a general rule, devices not requiring an additional element in contact with the abutment are considered to be safer: the Periotest, AnyCheck belong to this category, while the Osstell requires screwing the magnetic peg on the top of the abutment with 10 Ncm torque, and this might affect the bone–implant interface at the early healing stage. On the other hand, no-contact device results are hampered by a lack of repeatability, since small deviations in the location of the impact point result in significant variations of results. When comparing the stability of implants in different departments of the upper and lower jaw and different protocols of loading the implants, we can draw the following conclusions: - the maximum value of implant stability is recorded after one year in all clinical groups. This fact was proved in a statistically significant increase (p <0.05) of implant stability in both groups; - the initial values of the stability of the implants on the average for both jaws do not have a significant difference with direct or delayed loading 66,8 + 4,7 IST against 63,1 +3,9 (p> 0,05); - a decrease in the implant stability factor during loading indicates that the implant is overloaded; - however, it is not advisable to use this device to verify the primary stability fact, as the instrument’s performance is not related to the prognosis of intraosseous support. This indicates that even with insufficient initial mechanical fixation of the implant with delayed loading, one can expect to improve the stability of the implant due to the biological phase of osteointegration. Therefore, AnyCheck helps to control the implant osteointegration during the implantation phase and after orthopedic treatment, in order to detect negative changes at an early stage. https://vpbm.com.ua/upload/2019-4-1(153)/74-min.pdf mechanical stability of dental implantsresonance-frequency analysisosteointegration
spellingShingle Dobrovolskaya O. V.
DETERMINATION OF STABILITY OF IMPLANTS AS AN OBJECTIVE METHOD FOR PREDICTING AND EVALUATING EFFICIENCY TREATMENT IN DENTAL IMPLANTOLOGY
Вісник проблем біології і медицини
mechanical stability of dental implants
resonance-frequency analysis
osteointegration
title DETERMINATION OF STABILITY OF IMPLANTS AS AN OBJECTIVE METHOD FOR PREDICTING AND EVALUATING EFFICIENCY TREATMENT IN DENTAL IMPLANTOLOGY
title_full DETERMINATION OF STABILITY OF IMPLANTS AS AN OBJECTIVE METHOD FOR PREDICTING AND EVALUATING EFFICIENCY TREATMENT IN DENTAL IMPLANTOLOGY
title_fullStr DETERMINATION OF STABILITY OF IMPLANTS AS AN OBJECTIVE METHOD FOR PREDICTING AND EVALUATING EFFICIENCY TREATMENT IN DENTAL IMPLANTOLOGY
title_full_unstemmed DETERMINATION OF STABILITY OF IMPLANTS AS AN OBJECTIVE METHOD FOR PREDICTING AND EVALUATING EFFICIENCY TREATMENT IN DENTAL IMPLANTOLOGY
title_short DETERMINATION OF STABILITY OF IMPLANTS AS AN OBJECTIVE METHOD FOR PREDICTING AND EVALUATING EFFICIENCY TREATMENT IN DENTAL IMPLANTOLOGY
title_sort determination of stability of implants as an objective method for predicting and evaluating efficiency treatment in dental implantology
topic mechanical stability of dental implants
resonance-frequency analysis
osteointegration
url https://vpbm.com.ua/upload/2019-4-1(153)/74-min.pdf
work_keys_str_mv AT dobrovolskayaov determinationofstabilityofimplantsasanobjectivemethodforpredictingandevaluatingefficiencytreatmentindentalimplantology