Effective Crop Management and Modern Breeding Strategies to Ensure Higher Crop Productivity under Direct Seeded Rice Cultivation System: A Review

Paddy production through conventional puddled system of rice cultivation (PTR) is becoming more and more unsustainable—economically and environmentally—as this method is highly resource intensive and these resources are increasingly becoming scarce, and consequently, expensive. The ongoing large-sca...

Full description

Bibliographic Details
Main Authors: Nitika Sandhu, Shailesh Yadav, Vikas Kumar Singh, Arvind Kumar
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/11/7/1264
Description
Summary:Paddy production through conventional puddled system of rice cultivation (PTR) is becoming more and more unsustainable—economically and environmentally—as this method is highly resource intensive and these resources are increasingly becoming scarce, and consequently, expensive. The ongoing large-scale shift from puddled system of rice cultivation PTR to direct seeded rice (DSR) necessitates a convergence of breeding, agronomic and other approaches for its sustenance and harnessing natural resources and environmental benefits. Current DSR technology is largely based on agronomic interventions applied to the selected varieties of PTR. In DSR, poor crop establishment due to low germination, lack of DSR-adapted varieties, high weed-nematode incidences and micronutrient deficiency are primary constraints. The approach of this review paper is to discuss the existing evidences related to the DSR technologies. The review highlights a large number of conventionally/molecularly characterized strains amenable to rapid transfer and consolidation along with agronomic refinements, mechanization and water-nutrient-weed management strategies to develop a complete, ready to use DSR package. The review provides information on the traits, donors, genes/QTL needed for DSR and the available DSR-adapted breeding lines. Furthermore, the information is supplemented with a discussion on constrains and needed policies in scaling up the DSR adoption.
ISSN:2073-4395