Accurate numerical modeling of residual stress fields induced by laser shock peening
To improve the accuracy of numerical simulation of laser shock peening, a novel model is developed to predict residual stress distribution. An optical beam measurement system, a white light confocal displacement sensor, and other sensors are used to measure the laser shock peening parameters. Based...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2018-09-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.5039674 |
_version_ | 1819077921444200448 |
---|---|
author | Boyu Sun Hongchao Qiao Jibin Zhao |
author_facet | Boyu Sun Hongchao Qiao Jibin Zhao |
author_sort | Boyu Sun |
collection | DOAJ |
description | To improve the accuracy of numerical simulation of laser shock peening, a novel model is developed to predict residual stress distribution. An optical beam measurement system, a white light confocal displacement sensor, and other sensors are used to measure the laser shock peening parameters. Based on actual parameters, the model of shock wave pressure spatial distribution is established. Effects of key parameters, viz., overlapping rate and laser beam quality on residual stress distribution are analyzed by the proposed model. The influence mechanism of laser beam quality on residual stress hole is analyzed. Compared with conventional models, it is found that the proposed model has higher precision to predict residual stress distribution. The processing efficiency and strengthening effect can be improved by optimizing the overlapping rate and laser beam quality. The edge gradient of shock wave pressure reduces the intensity of the release wave convergence at the center, which can improve the uniformity of residual stress distribution. The proposed model can not only improve the accuracy of numerical simulation, but also provide guidance for optimizing the laser beam quality. |
first_indexed | 2024-12-21T19:04:53Z |
format | Article |
id | doaj.art-a0480f413488478f957f1e56374a112a |
institution | Directory Open Access Journal |
issn | 2158-3226 |
language | English |
last_indexed | 2024-12-21T19:04:53Z |
publishDate | 2018-09-01 |
publisher | AIP Publishing LLC |
record_format | Article |
series | AIP Advances |
spelling | doaj.art-a0480f413488478f957f1e56374a112a2022-12-21T18:53:23ZengAIP Publishing LLCAIP Advances2158-32262018-09-0189095203095203-1310.1063/1.5039674011809ADVAccurate numerical modeling of residual stress fields induced by laser shock peeningBoyu Sun0Hongchao Qiao1Jibin Zhao2Shenyang Institute of Automation Chinese Academy of Science, Shenyang 110016, ChinaShenyang Institute of Automation Chinese Academy of Science, Shenyang 110016, ChinaShenyang Institute of Automation Chinese Academy of Science, Shenyang 110016, ChinaTo improve the accuracy of numerical simulation of laser shock peening, a novel model is developed to predict residual stress distribution. An optical beam measurement system, a white light confocal displacement sensor, and other sensors are used to measure the laser shock peening parameters. Based on actual parameters, the model of shock wave pressure spatial distribution is established. Effects of key parameters, viz., overlapping rate and laser beam quality on residual stress distribution are analyzed by the proposed model. The influence mechanism of laser beam quality on residual stress hole is analyzed. Compared with conventional models, it is found that the proposed model has higher precision to predict residual stress distribution. The processing efficiency and strengthening effect can be improved by optimizing the overlapping rate and laser beam quality. The edge gradient of shock wave pressure reduces the intensity of the release wave convergence at the center, which can improve the uniformity of residual stress distribution. The proposed model can not only improve the accuracy of numerical simulation, but also provide guidance for optimizing the laser beam quality.http://dx.doi.org/10.1063/1.5039674 |
spellingShingle | Boyu Sun Hongchao Qiao Jibin Zhao Accurate numerical modeling of residual stress fields induced by laser shock peening AIP Advances |
title | Accurate numerical modeling of residual stress fields induced by laser shock peening |
title_full | Accurate numerical modeling of residual stress fields induced by laser shock peening |
title_fullStr | Accurate numerical modeling of residual stress fields induced by laser shock peening |
title_full_unstemmed | Accurate numerical modeling of residual stress fields induced by laser shock peening |
title_short | Accurate numerical modeling of residual stress fields induced by laser shock peening |
title_sort | accurate numerical modeling of residual stress fields induced by laser shock peening |
url | http://dx.doi.org/10.1063/1.5039674 |
work_keys_str_mv | AT boyusun accuratenumericalmodelingofresidualstressfieldsinducedbylasershockpeening AT hongchaoqiao accuratenumericalmodelingofresidualstressfieldsinducedbylasershockpeening AT jibinzhao accuratenumericalmodelingofresidualstressfieldsinducedbylasershockpeening |