Solution to linear KdV and nonLinear space fractional PDEs

In this work, the author will briefly discuss applications of the Fourier and Laplace transforms in the solution of certain singular integral equations and evaluation of integrals. By combining integral transforms and operational methods we get more powerful analytical tool for solving a wide class...

Full description

Bibliographic Details
Main Author: Arman Aghili
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2020-10-01
Series:Boletim da Sociedade Paranaense de Matemática
Online Access:https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/40360
_version_ 1797633507454877696
author Arman Aghili
author_facet Arman Aghili
author_sort Arman Aghili
collection DOAJ
description In this work, the author will briefly discuss applications of the Fourier and Laplace transforms in the solution of certain singular integral equations and evaluation of integrals. By combining integral transforms and operational methods we get more powerful analytical tool for solving a wide class of linear or even non- linear fractional differential or fractional partial differential equation. Numerous examples and exercises occur throughout the paper.  
first_indexed 2024-03-11T11:55:00Z
format Article
id doaj.art-a0528bfd671f46ba820f670e27bbfb1b
institution Directory Open Access Journal
issn 0037-8712
2175-1188
language English
last_indexed 2024-03-11T11:55:00Z
publishDate 2020-10-01
publisher Sociedade Brasileira de Matemática
record_format Article
series Boletim da Sociedade Paranaense de Matemática
spelling doaj.art-a0528bfd671f46ba820f670e27bbfb1b2023-11-08T20:01:49ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882020-10-0139210.5269/bspm.40360Solution to linear KdV and nonLinear space fractional PDEsArman Aghili0University of Guilan In this work, the author will briefly discuss applications of the Fourier and Laplace transforms in the solution of certain singular integral equations and evaluation of integrals. By combining integral transforms and operational methods we get more powerful analytical tool for solving a wide class of linear or even non- linear fractional differential or fractional partial differential equation. Numerous examples and exercises occur throughout the paper.   https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/40360
spellingShingle Arman Aghili
Solution to linear KdV and nonLinear space fractional PDEs
Boletim da Sociedade Paranaense de Matemática
title Solution to linear KdV and nonLinear space fractional PDEs
title_full Solution to linear KdV and nonLinear space fractional PDEs
title_fullStr Solution to linear KdV and nonLinear space fractional PDEs
title_full_unstemmed Solution to linear KdV and nonLinear space fractional PDEs
title_short Solution to linear KdV and nonLinear space fractional PDEs
title_sort solution to linear kdv and nonlinear space fractional pdes
url https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/40360
work_keys_str_mv AT armanaghili solutiontolinearkdvandnonlinearspacefractionalpdes