The Effects of Different Tillage Techniques and N Fertilizer Rates on Nitrogen and Phosphorus in Dry Land Agriculture

Processes governing soil organic matter (SOM) decomposition and mineralization are important for soil fertility and ecosystem sustainability. However, in the sub-Saharan region, limited work has been conducted on SOM dynamics; therefore, there was an imperative need for this study. The objective of...

Full description

Bibliographic Details
Main Authors: Bonginkosi S. Vilakazi, Rebecca Zengeni, Paramu Mafongoya
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/12/10/2389
Description
Summary:Processes governing soil organic matter (SOM) decomposition and mineralization are important for soil fertility and ecosystem sustainability. However, in the sub-Saharan region, limited work has been conducted on SOM dynamics; therefore, there was an imperative need for this study. The objective of this study was to determine the phosphorus (P) and nitrogen (N) dynamics in soil under different tillage and fertilizer management practices. The field trial was arranged as a randomized split plot design, with tillage forming the whole plot and the fertilizer application rate being the sub-plot. The tillage techniques were no-till (NT), annual tillage (CT-ANNUAL) and conventional tillage every fifth season (CT-Y5), whereby NT was practiced for four consecutive seasons, and in the fifth season, conventional tillage was employed. For all these tillage techniques, urea fertilizer was applied in amounts of 60, 120 and 240 kg N ha<sup>−1</sup> with a control for each tillage treatment. Ammonium and nitrate levels were determined calorimetrically. Sulfuric acid, at 1 M, along with 0.057 M ascorbic acid and molybdate reagent were used to extract the organic P from the soil and extractable P. The total N, ammonium, total P, organic P and extractable P in the surface soil under NT were higher (<i>p</i> < 0.05) compared to the values of both CT-Y5 and CT-ANNUAL. The high levels of total N, N mineralization, total P, organic P and extractable P under NT, compared to CT-Y5 and CT-ANNUAL, at the depth of 0–10 cm may be attributed to the accumulation of crop residues on the surface and less soil disturbance. Furthermore, nitrate was found in higher (<i>p</i> < 0.05) concentrations under CT-ANNUAL compared to CT-Y5 at all the application rates and depths. The ploughing of soil under CT-ANNUAL improves the aeration, which accelerates the decomposition of organic material and mineralization of organic N and P into soluble forms. No-till, at 60 kg N ha<sup>−1</sup> and a 0–10 cm soil depth, had optimum total N, nitrate, ammonium, total P and organic P values, thus showing its salient impact on the maintenance of soil fertility. However, the conclusion drawn from this study is that CT-Y5, due to its average N and P pools, can be recommended to under-resourced farmers in sub-Saharan preferentially over both NT and CT-ANNUAL, because it does not require advanced technology and equipment and it sustains an average soil fertility.
ISSN:2073-4395