Joint Light-Sensitive Balanced Butterfly Optimizer for Solving the NLO and NCO Problems of WSN for Environmental Monitoring

Existing swarm intelligence (SI) optimization algorithms applied to node localization optimization (NLO) and node coverage optimization (NCO) problems have low accuracy. In this study, a novel balanced butterfly optimizer (BBO) is proposed which comprehensively considers that butterflies in nature h...

Full description

Bibliographic Details
Main Authors: Fei Xia, Ming Yang, Mengjian Zhang, Jing Zhang
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Biomimetics
Subjects:
Online Access:https://www.mdpi.com/2313-7673/8/5/393
Description
Summary:Existing swarm intelligence (SI) optimization algorithms applied to node localization optimization (NLO) and node coverage optimization (NCO) problems have low accuracy. In this study, a novel balanced butterfly optimizer (BBO) is proposed which comprehensively considers that butterflies in nature have both smell-sensitive and light-sensitive characteristics. These smell-sensitive and light-sensitive characteristics are used for the global and local search strategies of the proposed algorithm, respectively. Notably, the value of individuals’ smell-sensitive characteristic is generally positive, which is a point that cannot be ignored. The performance of the proposed BBO is verified by twenty-three benchmark functions and compared to other state-of-the-art (SOTA) SI algorithms, including particle swarm optimization (PSO), differential evolution (DE), grey wolf optimizer (GWO), artificial butterfly optimization (ABO), butterfly optimization algorithm (BOA), Harris hawk optimization (HHO), and aquila optimizer (AO). The results demonstrate that the proposed BBO has better performance with the global search ability and strong stability. In addition, the BBO algorithm is used to address NLO and NCO problems in wireless sensor networks (WSNs) used in environmental monitoring, obtaining good results.
ISSN:2313-7673