Generating Synthetic Training Data for Supervised De-Identification of Electronic Health Records
A major hurdle in the development of natural language processing (NLP) methods for Electronic Health Records (EHRs) is the lack of large, annotated datasets. Privacy concerns prevent the distribution of EHRs, and the annotation of data is known to be costly and cumbersome. Synthetic data presents a...
Hlavní autoři: | , , , |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2021-05-01
|
Edice: | Future Internet |
Témata: | |
On-line přístup: | https://www.mdpi.com/1999-5903/13/5/136 |