Generating Synthetic Training Data for Supervised De-Identification of Electronic Health Records

A major hurdle in the development of natural language processing (NLP) methods for Electronic Health Records (EHRs) is the lack of large, annotated datasets. Privacy concerns prevent the distribution of EHRs, and the annotation of data is known to be costly and cumbersome. Synthetic data presents a...

Celý popis

Podrobná bibliografie
Hlavní autoři: Claudia Alessandra Libbi, Jan Trienes, Dolf Trieschnigg, Christin Seifert
Médium: Článek
Jazyk:English
Vydáno: MDPI AG 2021-05-01
Edice:Future Internet
Témata:
On-line přístup:https://www.mdpi.com/1999-5903/13/5/136