Generating Synthetic Training Data for Supervised De-Identification of Electronic Health Records

A major hurdle in the development of natural language processing (NLP) methods for Electronic Health Records (EHRs) is the lack of large, annotated datasets. Privacy concerns prevent the distribution of EHRs, and the annotation of data is known to be costly and cumbersome. Synthetic data presents a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Claudia Alessandra Libbi, Jan Trienes, Dolf Trieschnigg, Christin Seifert
Μορφή: Άρθρο
Γλώσσα:English
Έκδοση: MDPI AG 2021-05-01
Σειρά:Future Internet
Θέματα:
Διαθέσιμο Online:https://www.mdpi.com/1999-5903/13/5/136