SEMANTIC SEGMENTATION METHOD ACCELERATED QUANTITATIVE ANALYSIS OF THE SPATIAL CHARACTERISTICS OF TRADITIONAL VILLAGES

Rapid investigation and quantitative analysis are crucial for heritage conservation and renewal design. As an important category of architectural heritage - traditional settlements - with their large number and complex spatial characteristics, their spatial character patterns are an important suppor...

Full description

Bibliographic Details
Main Authors: M. Zhang, Z. Li, X. Wu
Format: Article
Language:English
Published: Copernicus Publications 2021-08-01
Series:The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Online Access:https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-M-1-2021/933/2021/isprs-archives-XLVI-M-1-2021-933-2021.pdf
_version_ 1818718383945809920
author M. Zhang
Z. Li
Z. Li
X. Wu
author_facet M. Zhang
Z. Li
Z. Li
X. Wu
author_sort M. Zhang
collection DOAJ
description Rapid investigation and quantitative analysis are crucial for heritage conservation and renewal design. As an important category of architectural heritage - traditional settlements - with their large number and complex spatial characteristics, their spatial character patterns are an important support to assist settlement conservation and renewal design. However, the current means of analysis often requires manual data collection, secondary mapping of the collected data, extraction of individual elemental patterns and village boundaries. Then settlement boundary form, settlement density will be calculated by mathematical methods. The above methods are inefficient and prone to manual mapping errors, making it difficult to quantify and analyze a large number of traditional villages in a short period of time. Semantic segmentation is a computer vision technique for quickly segmenting different objects. Based on the collected remote sensing data of traditional villages, this paper established a dataset of semantic segmentation of spatial features of traditional settlements, segmenting village buildings, water systems, roads and plants. Using Transfer learning, data augmentation and other methods, a model was trained that can automatically segment elements of the villages. From the national traditional villages that have been announced so far, 60 traditional villages from different regions in the north and south were selected for analysis. The experiments show that the model established in this paper has an accuracy rate of above 86% in segmenting elements of villages, can effectively identify the location of different elements in remote sensing images, effectively improves the quantification rate of spatial features of settlements and saves the cost of mapping and data transcription. The results of the spatial characteristics of the 60 villages studied in this paper can also provide some theoretical basis and inspiration for the study, conservation, design and transformation of traditional villages.
first_indexed 2024-12-17T19:50:11Z
format Article
id doaj.art-a076455e339b41438585d471d2768322
institution Directory Open Access Journal
issn 1682-1750
2194-9034
language English
last_indexed 2024-12-17T19:50:11Z
publishDate 2021-08-01
publisher Copernicus Publications
record_format Article
series The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
spelling doaj.art-a076455e339b41438585d471d27683222022-12-21T21:34:45ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342021-08-01XLVI-M-1-202193393910.5194/isprs-archives-XLVI-M-1-2021-933-2021SEMANTIC SEGMENTATION METHOD ACCELERATED QUANTITATIVE ANALYSIS OF THE SPATIAL CHARACTERISTICS OF TRADITIONAL VILLAGESM. Zhang0Z. Li1Z. Li2X. Wu3School of Architecture, Tianjin University, Tianjin, 300072, ChinaSchool of Architecture, Tianjin University, Tianjin, 300072, ChinaKey Laboratory of Information Technology for Architectural Cultural Inheritance, Ministry of Cultural and Tourism, Tianjin, 300072, ChinaSchool of Urban Design, Wuhan University, Wuhan, 430072, ChinaRapid investigation and quantitative analysis are crucial for heritage conservation and renewal design. As an important category of architectural heritage - traditional settlements - with their large number and complex spatial characteristics, their spatial character patterns are an important support to assist settlement conservation and renewal design. However, the current means of analysis often requires manual data collection, secondary mapping of the collected data, extraction of individual elemental patterns and village boundaries. Then settlement boundary form, settlement density will be calculated by mathematical methods. The above methods are inefficient and prone to manual mapping errors, making it difficult to quantify and analyze a large number of traditional villages in a short period of time. Semantic segmentation is a computer vision technique for quickly segmenting different objects. Based on the collected remote sensing data of traditional villages, this paper established a dataset of semantic segmentation of spatial features of traditional settlements, segmenting village buildings, water systems, roads and plants. Using Transfer learning, data augmentation and other methods, a model was trained that can automatically segment elements of the villages. From the national traditional villages that have been announced so far, 60 traditional villages from different regions in the north and south were selected for analysis. The experiments show that the model established in this paper has an accuracy rate of above 86% in segmenting elements of villages, can effectively identify the location of different elements in remote sensing images, effectively improves the quantification rate of spatial features of settlements and saves the cost of mapping and data transcription. The results of the spatial characteristics of the 60 villages studied in this paper can also provide some theoretical basis and inspiration for the study, conservation, design and transformation of traditional villages.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-M-1-2021/933/2021/isprs-archives-XLVI-M-1-2021-933-2021.pdf
spellingShingle M. Zhang
Z. Li
Z. Li
X. Wu
SEMANTIC SEGMENTATION METHOD ACCELERATED QUANTITATIVE ANALYSIS OF THE SPATIAL CHARACTERISTICS OF TRADITIONAL VILLAGES
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
title SEMANTIC SEGMENTATION METHOD ACCELERATED QUANTITATIVE ANALYSIS OF THE SPATIAL CHARACTERISTICS OF TRADITIONAL VILLAGES
title_full SEMANTIC SEGMENTATION METHOD ACCELERATED QUANTITATIVE ANALYSIS OF THE SPATIAL CHARACTERISTICS OF TRADITIONAL VILLAGES
title_fullStr SEMANTIC SEGMENTATION METHOD ACCELERATED QUANTITATIVE ANALYSIS OF THE SPATIAL CHARACTERISTICS OF TRADITIONAL VILLAGES
title_full_unstemmed SEMANTIC SEGMENTATION METHOD ACCELERATED QUANTITATIVE ANALYSIS OF THE SPATIAL CHARACTERISTICS OF TRADITIONAL VILLAGES
title_short SEMANTIC SEGMENTATION METHOD ACCELERATED QUANTITATIVE ANALYSIS OF THE SPATIAL CHARACTERISTICS OF TRADITIONAL VILLAGES
title_sort semantic segmentation method accelerated quantitative analysis of the spatial characteristics of traditional villages
url https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-M-1-2021/933/2021/isprs-archives-XLVI-M-1-2021-933-2021.pdf
work_keys_str_mv AT mzhang semanticsegmentationmethodacceleratedquantitativeanalysisofthespatialcharacteristicsoftraditionalvillages
AT zli semanticsegmentationmethodacceleratedquantitativeanalysisofthespatialcharacteristicsoftraditionalvillages
AT zli semanticsegmentationmethodacceleratedquantitativeanalysisofthespatialcharacteristicsoftraditionalvillages
AT xwu semanticsegmentationmethodacceleratedquantitativeanalysisofthespatialcharacteristicsoftraditionalvillages