Three nontrivial solutions for Neumann problems resonant at any positive eigenvalue

We consider a semilinear Neumann problem with a parametric reaction which has a concave term and a perturbation which at ±∞ can be resonant with respect to any positive eigenvalue. Using variational methods based on the critical point theory and Morse theory, we show that there exists a critical par...

Full description

Bibliographic Details
Main Authors: Sophia Th. Kyritsi, Nikolaus S. Papageorgiou
Format: Article
Language:English
Published: Università degli Studi di Catania 2010-12-01
Series:Le Matematiche
Subjects:
Online Access:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/826
_version_ 1811206664915779584
author Sophia Th. Kyritsi
Nikolaus S. Papageorgiou
author_facet Sophia Th. Kyritsi
Nikolaus S. Papageorgiou
author_sort Sophia Th. Kyritsi
collection DOAJ
description We consider a semilinear Neumann problem with a parametric reaction which has a concave term and a perturbation which at ±∞ can be resonant with respect to any positive eigenvalue. Using variational methods based on the critical point theory and Morse theory, we show that there exists a critical parameter value λ ∗ > 0 such that if λ ∈(0, λ ∗ ), then the problem has at least three nontrivial smooth solutions.<br />
first_indexed 2024-04-12T03:50:54Z
format Article
id doaj.art-a0799c64ffc4461a86fa4d631cfed142
institution Directory Open Access Journal
issn 0373-3505
2037-5298
language English
last_indexed 2024-04-12T03:50:54Z
publishDate 2010-12-01
publisher Università degli Studi di Catania
record_format Article
series Le Matematiche
spelling doaj.art-a0799c64ffc4461a86fa4d631cfed1422022-12-22T03:48:58ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52982010-12-016527995762Three nontrivial solutions for Neumann problems resonant at any positive eigenvalueSophia Th. KyritsiNikolaus S. PapageorgiouWe consider a semilinear Neumann problem with a parametric reaction which has a concave term and a perturbation which at ±∞ can be resonant with respect to any positive eigenvalue. Using variational methods based on the critical point theory and Morse theory, we show that there exists a critical parameter value λ ∗ > 0 such that if λ ∈(0, λ ∗ ), then the problem has at least three nontrivial smooth solutions.<br />http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/826ResonanceConcave termUnique continuation propertyEkeland variational principleCritical groupsMorse relationNondegenerate critical point.
spellingShingle Sophia Th. Kyritsi
Nikolaus S. Papageorgiou
Three nontrivial solutions for Neumann problems resonant at any positive eigenvalue
Le Matematiche
Resonance
Concave term
Unique continuation property
Ekeland variational principle
Critical groups
Morse relation
Nondegenerate critical point.
title Three nontrivial solutions for Neumann problems resonant at any positive eigenvalue
title_full Three nontrivial solutions for Neumann problems resonant at any positive eigenvalue
title_fullStr Three nontrivial solutions for Neumann problems resonant at any positive eigenvalue
title_full_unstemmed Three nontrivial solutions for Neumann problems resonant at any positive eigenvalue
title_short Three nontrivial solutions for Neumann problems resonant at any positive eigenvalue
title_sort three nontrivial solutions for neumann problems resonant at any positive eigenvalue
topic Resonance
Concave term
Unique continuation property
Ekeland variational principle
Critical groups
Morse relation
Nondegenerate critical point.
url http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/826
work_keys_str_mv AT sophiathkyritsi threenontrivialsolutionsforneumannproblemsresonantatanypositiveeigenvalue
AT nikolausspapageorgiou threenontrivialsolutionsforneumannproblemsresonantatanypositiveeigenvalue