Circadian Rhythms, the Gut Microbiome, and Metabolic Disorders

The circadian clock and gut microbiome play integral roles in preserving metabolic homeostasis. Circadian rhythms represent an endogenous time-keeping system that regulates cell and organ functions and synchronizes physiology with external cues to establish metabolic homeostasis. A variety of functi...

Full description

Bibliographic Details
Main Authors: Eric Zhao, Christopher Tait, Carlos D. Minacapelli, Carolyn Catalano, Vinod K. Rustgi
Format: Article
Language:English
Published: Elsevier 2022-01-01
Series:Gastro Hep Advances
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772572321000248
Description
Summary:The circadian clock and gut microbiome play integral roles in preserving metabolic homeostasis. Circadian rhythms represent an endogenous time-keeping system that regulates cell and organ functions and synchronizes physiology with external cues to establish metabolic homeostasis. A variety of functions throughout the gastrointestinal tract and liver are under circadian control, including nutrient transport, processing, and detoxification. The gut microbiota also plays an essential role in host metabolism, regulating processes such as digestion, inflammatory modulation, and bile acid metabolism. Both the circadian clock and the gut microbiota influence each other in a reciprocal fashion, as gut dysbiosis can precipitate circadian asynchrony, and vice-versa. Disruption of either system impacts homeostasis in a bidirectional manner and can contribute to metabolic dysfunction. Evidence suggests such disruptions can lead to the development of metabolic diseases, including obesity, diabetes, nonalcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma. This review will provide a basic overview of the circadian and gut microbial systems, how they are intertwined, and their impact on the liver and gastrointestinal tract and in the development of metabolic disease. Particular areas of discussion include epigenetic regulation of circadian pathways as well as a mechanistic overview of microbial dysbiosis. In addition, therapeutic targets of these systems, including dietary modifications, behavioral modifications, and microbial-directed therapies, will be explored.
ISSN:2772-5723