Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler

In this work, we study systems consisting of a group of moving particles. In such systems, often some important parameters are unknown and have to be estimated from observed data. Such parameter estimation problems can often be solved via a Bayesian inference framework. However, in many practical pr...

Description complète

Détails bibliographiques
Auteurs principaux: Chen Cheng, Linjie Wen, Jinglai Li
Format: Article
Langue:English
Publié: The Royal Society 2023-08-01
Collection:Royal Society Open Science
Sujets:
Accès en ligne:https://royalsocietypublishing.org/doi/10.1098/rsos.230275