Parameter estimation from aggregate observations: a Wasserstein distance-based sequential Monte Carlo sampler
In this work, we study systems consisting of a group of moving particles. In such systems, often some important parameters are unknown and have to be estimated from observed data. Such parameter estimation problems can often be solved via a Bayesian inference framework. However, in many practical pr...
Hlavní autoři: | , , |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
The Royal Society
2023-08-01
|
Edice: | Royal Society Open Science |
Témata: | |
On-line přístup: | https://royalsocietypublishing.org/doi/10.1098/rsos.230275 |