Activity and Kinematics of Two Adjacent Freeze–Thaw-Related Landslides Revealed by Multisource Remote Sensing of Qilian Mountain
The increase in temperatures and changing precipitation patterns resulting from climate change are accelerating the occurrence and development of landslides in cold regions, especially in permafrost environments. Although the boundary regions between permafrost and seasonally frozen ground are very...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-10-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/14/19/5059 |
_version_ | 1827653099221680128 |
---|---|
author | Jie Chen Jing Zhang Tonghua Wu Junming Hao Xiaodong Wu Xuyan Ma Xiaofan Zhu Peiqing Lou Lina Zhang |
author_facet | Jie Chen Jing Zhang Tonghua Wu Junming Hao Xiaodong Wu Xuyan Ma Xiaofan Zhu Peiqing Lou Lina Zhang |
author_sort | Jie Chen |
collection | DOAJ |
description | The increase in temperatures and changing precipitation patterns resulting from climate change are accelerating the occurrence and development of landslides in cold regions, especially in permafrost environments. Although the boundary regions between permafrost and seasonally frozen ground are very sensitive to climate warming, slope failures and their kinematics remain barely characterized or understood in these regions. Here, we apply multisource remote sensing and field investigation to study the activity and kinematics of two adjacent landslides (hereafter referred to as “twin landslides”) along the Datong River in the Qilian Mountains of the Qinghai-Tibet Plateau. After failure, there is no obvious change in the area corresponding to the twin landslides. Based on InSAR measurements derived from ALOS PALSAR-1 and -2, we observe significant downslope movements of up to 15 mm/day within the twin landslides and up to 5 mm/day in their surrounding slopes. We show that the downslope movements exhibit distinct seasonality; during the late thaw and early freeze season, a mean velocity of about 4 mm/day is observed, while during the late freeze and early thaw season the downslope velocity is nearly inactive. The pronounced seasonality of downslope movements during both pre- and post-failure stages suggest that the occurrence and development of the twin landslide are strongly influenced by freeze–thaw processes. Based on meteorological data, we infer that the occurrence of twin landslides are related to extensive precipitation and warm winters. Based on risk assessment, InSAR measurements, and field investigation, we infer that new slope failure or collapse may occur in the near future, which will probably block the Datong River and cause catastrophic disasters. Our study provides new insight into the failure mechanisms of slopes at the boundaries of permafrost and seasonally frozen ground. |
first_indexed | 2024-03-09T21:12:17Z |
format | Article |
id | doaj.art-a08e3074021e4c7bb4f07be8c766c7f2 |
institution | Directory Open Access Journal |
issn | 2072-4292 |
language | English |
last_indexed | 2024-03-09T21:12:17Z |
publishDate | 2022-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj.art-a08e3074021e4c7bb4f07be8c766c7f22023-11-23T21:43:16ZengMDPI AGRemote Sensing2072-42922022-10-011419505910.3390/rs14195059Activity and Kinematics of Two Adjacent Freeze–Thaw-Related Landslides Revealed by Multisource Remote Sensing of Qilian MountainJie Chen0Jing Zhang1Tonghua Wu2Junming Hao3Xiaodong Wu4Xuyan Ma5Xiaofan Zhu6Peiqing Lou7Lina Zhang8Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, ChinaKey Laboratory of Seismic and Volcanic Hazards, China Earthquake Administration, Beijing 100029, ChinaCryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, ChinaSchool of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, ChinaCryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, ChinaGeomatics Technology and Application Key Laboratory of Qinghai Province, Qinghai Remote Sensing Center for Natural Resources, Qinghai 810001, ChinaCryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, ChinaCryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, ChinaSchool of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, ChinaThe increase in temperatures and changing precipitation patterns resulting from climate change are accelerating the occurrence and development of landslides in cold regions, especially in permafrost environments. Although the boundary regions between permafrost and seasonally frozen ground are very sensitive to climate warming, slope failures and their kinematics remain barely characterized or understood in these regions. Here, we apply multisource remote sensing and field investigation to study the activity and kinematics of two adjacent landslides (hereafter referred to as “twin landslides”) along the Datong River in the Qilian Mountains of the Qinghai-Tibet Plateau. After failure, there is no obvious change in the area corresponding to the twin landslides. Based on InSAR measurements derived from ALOS PALSAR-1 and -2, we observe significant downslope movements of up to 15 mm/day within the twin landslides and up to 5 mm/day in their surrounding slopes. We show that the downslope movements exhibit distinct seasonality; during the late thaw and early freeze season, a mean velocity of about 4 mm/day is observed, while during the late freeze and early thaw season the downslope velocity is nearly inactive. The pronounced seasonality of downslope movements during both pre- and post-failure stages suggest that the occurrence and development of the twin landslide are strongly influenced by freeze–thaw processes. Based on meteorological data, we infer that the occurrence of twin landslides are related to extensive precipitation and warm winters. Based on risk assessment, InSAR measurements, and field investigation, we infer that new slope failure or collapse may occur in the near future, which will probably block the Datong River and cause catastrophic disasters. Our study provides new insight into the failure mechanisms of slopes at the boundaries of permafrost and seasonally frozen ground.https://www.mdpi.com/2072-4292/14/19/5059landslidesGaofen-2Interferometric synthetic aperture radar (InSAR)freeze–thaw processespermafrostQilian Mountains |
spellingShingle | Jie Chen Jing Zhang Tonghua Wu Junming Hao Xiaodong Wu Xuyan Ma Xiaofan Zhu Peiqing Lou Lina Zhang Activity and Kinematics of Two Adjacent Freeze–Thaw-Related Landslides Revealed by Multisource Remote Sensing of Qilian Mountain Remote Sensing landslides Gaofen-2 Interferometric synthetic aperture radar (InSAR) freeze–thaw processes permafrost Qilian Mountains |
title | Activity and Kinematics of Two Adjacent Freeze–Thaw-Related Landslides Revealed by Multisource Remote Sensing of Qilian Mountain |
title_full | Activity and Kinematics of Two Adjacent Freeze–Thaw-Related Landslides Revealed by Multisource Remote Sensing of Qilian Mountain |
title_fullStr | Activity and Kinematics of Two Adjacent Freeze–Thaw-Related Landslides Revealed by Multisource Remote Sensing of Qilian Mountain |
title_full_unstemmed | Activity and Kinematics of Two Adjacent Freeze–Thaw-Related Landslides Revealed by Multisource Remote Sensing of Qilian Mountain |
title_short | Activity and Kinematics of Two Adjacent Freeze–Thaw-Related Landslides Revealed by Multisource Remote Sensing of Qilian Mountain |
title_sort | activity and kinematics of two adjacent freeze thaw related landslides revealed by multisource remote sensing of qilian mountain |
topic | landslides Gaofen-2 Interferometric synthetic aperture radar (InSAR) freeze–thaw processes permafrost Qilian Mountains |
url | https://www.mdpi.com/2072-4292/14/19/5059 |
work_keys_str_mv | AT jiechen activityandkinematicsoftwoadjacentfreezethawrelatedlandslidesrevealedbymultisourceremotesensingofqilianmountain AT jingzhang activityandkinematicsoftwoadjacentfreezethawrelatedlandslidesrevealedbymultisourceremotesensingofqilianmountain AT tonghuawu activityandkinematicsoftwoadjacentfreezethawrelatedlandslidesrevealedbymultisourceremotesensingofqilianmountain AT junminghao activityandkinematicsoftwoadjacentfreezethawrelatedlandslidesrevealedbymultisourceremotesensingofqilianmountain AT xiaodongwu activityandkinematicsoftwoadjacentfreezethawrelatedlandslidesrevealedbymultisourceremotesensingofqilianmountain AT xuyanma activityandkinematicsoftwoadjacentfreezethawrelatedlandslidesrevealedbymultisourceremotesensingofqilianmountain AT xiaofanzhu activityandkinematicsoftwoadjacentfreezethawrelatedlandslidesrevealedbymultisourceremotesensingofqilianmountain AT peiqinglou activityandkinematicsoftwoadjacentfreezethawrelatedlandslidesrevealedbymultisourceremotesensingofqilianmountain AT linazhang activityandkinematicsoftwoadjacentfreezethawrelatedlandslidesrevealedbymultisourceremotesensingofqilianmountain |