Open Dataset Recorded by Single Cameras for Multi-Player Tracking in Soccer Scenarios

Multi-player action recognition for automatic analysis in sports is the subject of increasing attention. Trajectory-tracking technology is key for accurate recognition, but little research has focused on this aspect, especially for non-professional matches. Here, we study multi-player tracking in th...

Full description

Bibliographic Details
Main Authors: Wenbin Huang, Sailing He, Yaoran Sun, Julian Evans, Xian Song, Tongyu Geng, Guanrong Sun, Xubo Fu
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/15/7473
Description
Summary:Multi-player action recognition for automatic analysis in sports is the subject of increasing attention. Trajectory-tracking technology is key for accurate recognition, but little research has focused on this aspect, especially for non-professional matches. Here, we study multi-player tracking in the most popular and complex sport among non-professionals—soccer. In this non-professional soccer player tracking (NPSPT) challenge, single-view-based motion recording systems for continuous data collection were installed in several soccer fields, and a new benchmark dataset was collected. The dataset consists of 17 2-min long super-high-resolution videos with diverse game types consistently labeled across time, covering almost all possible situations for multi-player detection and tracking in real games. A comprehensive evaluation was conducted on the state-of-the-art multi-object-Tracking (MOT) systems, revealing insights into player tracking in real games. Our challenge introduces a new dimension for researchers in the player recognition field and will be beneficial to further studies.
ISSN:2076-3417