Evaluation of Strategies Based on Wavelet-ICA and ICLabel for Artifact Correction in EEG Recordings

In quantitative electroencephalography, it is of vital importance to eliminate non-neural components, as these can lead to an erroneous analysis of the acquired signals, limiting their use in diagnosis and other clinical applications. In light of this drawback, preprocessing pipelines based on the...

Szczegółowa specyfikacja

Opis bibliograficzny
Główni autorzy: Luisa-María Zapata-Saldarriaga, Angie-Dahiana Vargas-Serna, Jesica Gil-Gutiérrez, Yorguin-Jose Mantilla-Ramos, John-Fredy Ochoa-Gómez
Format: Artykuł
Język:English
Wydane: Universidad Distrital Francisco José de Caldas 2023-01-01
Seria:Revista Científica
Hasła przedmiotowe:
Dostęp online:https://200.69.103.50/index.php/revcie/article/view/19068