Post-processing of direct metal deposited AlCrCoCuFeNi HEA using centrifugal barrel finishing

Stainless steels, Ni-based alloys, Ti-based alloys, and more recently high entropy alloys have been used in the aerospace industry to improve the exterior properties of components and coatings that require a fine surface finishing with over high temperature range. High- entropy alloys (HEA) have bec...

Full description

Bibliographic Details
Main Authors: Modikwe Thembisile, Maledi Nthabiseng, Mathe Ntombi, Pityana Sisa, Dada Modupeola, Makoana Washington
Format: Article
Language:English
Published: EDP Sciences 2022-01-01
Series:MATEC Web of Conferences
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2022/17/matecconf_rapdasa2022_06007.pdf
Description
Summary:Stainless steels, Ni-based alloys, Ti-based alloys, and more recently high entropy alloys have been used in the aerospace industry to improve the exterior properties of components and coatings that require a fine surface finishing with over high temperature range. High- entropy alloys (HEA) have become a ground-breaking research field that provides solutions for structural/ functional materials in the aerospace industry. These alloys, fabricated via direct metal deposition, have better properties than those produced by arc melting. However, the poor surface finish acquired by the layer-by-layer laser deposition process fails to meet the industrial requirements. The implementation of surface treatment by centrifugal barrel finishing is employed to improve the surface roughness of AlCoCrCuFeNi laser deposited HEA. The results have shown a minimum surface roughness decrease of 40%. Thus, an improved surface finish was achieved.
ISSN:2261-236X