Reflexive edge strength of convex polytopes and corona product of cycle with path

For a graph $ G $, we define a total $ k $-labeling $ \varphi $ is a combination of an edge labeling $ \varphi_e(x)\to\{1, 2, \ldots, k_e\} $ and a vertex labeling $ \varphi_v(x) \to \{0, 2, \ldots, 2k_v\} $, such that $ \varphi(x) = \varphi_v(x) $ if $ x\in V(G) $ and $ \varphi(x) = \varphi_e(x) $...

Full description

Bibliographic Details
Main Authors: Kooi-Kuan Yoong, Roslan Hasni, Gee-Choon Lau, Muhammad Ahsan Asim, Ali Ahmad
Format: Article
Language:English
Published: AIMS Press 2022-04-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2022657?viewType=HTML
_version_ 1818270416473423872
author Kooi-Kuan Yoong
Roslan Hasni
Gee-Choon Lau
Muhammad Ahsan Asim
Ali Ahmad
author_facet Kooi-Kuan Yoong
Roslan Hasni
Gee-Choon Lau
Muhammad Ahsan Asim
Ali Ahmad
author_sort Kooi-Kuan Yoong
collection DOAJ
description For a graph $ G $, we define a total $ k $-labeling $ \varphi $ is a combination of an edge labeling $ \varphi_e(x)\to\{1, 2, \ldots, k_e\} $ and a vertex labeling $ \varphi_v(x) \to \{0, 2, \ldots, 2k_v\} $, such that $ \varphi(x) = \varphi_v(x) $ if $ x\in V(G) $ and $ \varphi(x) = \varphi_e(x) $ if $ x\in E(G) $, then $ k = \, \mbox{max}\, \{k_e, 2k_v\} $. The total $ k $-labeling $ \varphi $ is an <i>edge irregular reflexive $ k $-labeling</i> of $ G $ if every two different edges $ xy $ and $ x^\prime y^\prime $, the edge weights are distinct. The smallest value $ k $ for which such labeling exists is called a <i>reflexive edge strength</i> of $ G $. In this paper, we focus on the edge irregular reflexive labeling of antiprism, convex polytopes $ \mathcal D_{n} $, $ \mathcal R_{n} $, and corona product of cycle with path. This study also leads to interesting open problems for further extension of the work.
first_indexed 2024-12-12T21:09:56Z
format Article
id doaj.art-a0df1e3a4592412b9255d87f840d858b
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-12T21:09:56Z
publishDate 2022-04-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-a0df1e3a4592412b9255d87f840d858b2022-12-22T00:11:55ZengAIMS PressAIMS Mathematics2473-69882022-04-0177117841180010.3934/math.2022657Reflexive edge strength of convex polytopes and corona product of cycle with pathKooi-Kuan Yoong0Roslan Hasni1Gee-Choon Lau2Muhammad Ahsan Asim 3Ali Ahmad41. Special Interest Group on Modelling and Data Analytics (SIGMDA), Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Terengganu, Malaysia1. Special Interest Group on Modelling and Data Analytics (SIGMDA), Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Terengganu, Malaysia2. Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (Segamat Campus), Johor, Malaysia3. College of Computer Sciences and Information Technology, Jazan University, Jazan, Saudi Arabia3. College of Computer Sciences and Information Technology, Jazan University, Jazan, Saudi ArabiaFor a graph $ G $, we define a total $ k $-labeling $ \varphi $ is a combination of an edge labeling $ \varphi_e(x)\to\{1, 2, \ldots, k_e\} $ and a vertex labeling $ \varphi_v(x) \to \{0, 2, \ldots, 2k_v\} $, such that $ \varphi(x) = \varphi_v(x) $ if $ x\in V(G) $ and $ \varphi(x) = \varphi_e(x) $ if $ x\in E(G) $, then $ k = \, \mbox{max}\, \{k_e, 2k_v\} $. The total $ k $-labeling $ \varphi $ is an <i>edge irregular reflexive $ k $-labeling</i> of $ G $ if every two different edges $ xy $ and $ x^\prime y^\prime $, the edge weights are distinct. The smallest value $ k $ for which such labeling exists is called a <i>reflexive edge strength</i> of $ G $. In this paper, we focus on the edge irregular reflexive labeling of antiprism, convex polytopes $ \mathcal D_{n} $, $ \mathcal R_{n} $, and corona product of cycle with path. This study also leads to interesting open problems for further extension of the work. https://www.aimspress.com/article/doi/10.3934/math.2022657?viewType=HTMLconvex polytopecorona productedge irregular reflexive labelingplane graphreflexive edge strength
spellingShingle Kooi-Kuan Yoong
Roslan Hasni
Gee-Choon Lau
Muhammad Ahsan Asim
Ali Ahmad
Reflexive edge strength of convex polytopes and corona product of cycle with path
AIMS Mathematics
convex polytope
corona product
edge irregular reflexive labeling
plane graph
reflexive edge strength
title Reflexive edge strength of convex polytopes and corona product of cycle with path
title_full Reflexive edge strength of convex polytopes and corona product of cycle with path
title_fullStr Reflexive edge strength of convex polytopes and corona product of cycle with path
title_full_unstemmed Reflexive edge strength of convex polytopes and corona product of cycle with path
title_short Reflexive edge strength of convex polytopes and corona product of cycle with path
title_sort reflexive edge strength of convex polytopes and corona product of cycle with path
topic convex polytope
corona product
edge irregular reflexive labeling
plane graph
reflexive edge strength
url https://www.aimspress.com/article/doi/10.3934/math.2022657?viewType=HTML
work_keys_str_mv AT kooikuanyoong reflexiveedgestrengthofconvexpolytopesandcoronaproductofcyclewithpath
AT roslanhasni reflexiveedgestrengthofconvexpolytopesandcoronaproductofcyclewithpath
AT geechoonlau reflexiveedgestrengthofconvexpolytopesandcoronaproductofcyclewithpath
AT muhammadahsanasim reflexiveedgestrengthofconvexpolytopesandcoronaproductofcyclewithpath
AT aliahmad reflexiveedgestrengthofconvexpolytopesandcoronaproductofcyclewithpath