On inclusive distance vertex irregular labelings

<p>For a simple graph <span class="math"><em>G</em></span>, a vertex labeling <span class="math"><em>f</em> : <em>V</em>(<em>G</em>) → {1, 2, ..., <em>k</em>}</span> is called a <span cla...

Full description

Bibliographic Details
Main Authors: Martin Baca, Andrea Semanicova-Fenovcikova, S. Slamin, Kiki A. Sugeng
Format: Article
Language:English
Published: Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia 2018-04-01
Series:Electronic Journal of Graph Theory and Applications
Subjects:
Online Access:https://www.ejgta.org/index.php/ejgta/article/view/463
_version_ 1818469903219294208
author Martin Baca
Andrea Semanicova-Fenovcikova
S. Slamin
Kiki A. Sugeng
author_facet Martin Baca
Andrea Semanicova-Fenovcikova
S. Slamin
Kiki A. Sugeng
author_sort Martin Baca
collection DOAJ
description <p>For a simple graph <span class="math"><em>G</em></span>, a vertex labeling <span class="math"><em>f</em> : <em>V</em>(<em>G</em>) → {1, 2, ..., <em>k</em>}</span> is called a <span class="math"><em>k</em></span>-labeling. The weight of a vertex <span class="math"><em>v</em></span>, denoted by <span class="math"><em>w</em><em>t</em><sub><em>f</em></sub>(<em>v</em>)</span> is the sum of all vertex labels of vertices in the closed neighborhood of the vertex <span class="math"><em>v</em></span>. A vertex <span class="math"><em>k</em></span>-labeling is defined to be an inclusive distance vertex irregular distance <span class="math"><em>k</em></span>-labeling of <span class="math"><em>G</em></span> if for every two different vertices <span class="math"><em>u</em></span> and <span class="math"><em>v</em></span> there is <span class="math"><em>w</em><em>t</em><sub><em>f</em></sub>(<em>u</em>) ≠ <em>w</em><em>t</em><sub><em>f</em></sub>(<em>v</em>)</span>. The minimum <span class="math"><em>k</em></span> for which the graph <span class="math"><em>G</em></span> has a vertex irregular distance <span class="math"><em>k</em></span>-labeling is called the inclusive distance vertex irregularity strength of <span class="math"><em>G</em></span>. In this paper we establish a lower bound of the inclusive distance vertex irregularity strength for any graph and determine the exact value of this parameter for several families of graphs.</p>
first_indexed 2024-04-13T21:30:52Z
format Article
id doaj.art-a0e3c7909b7e4f6fa4d7ad55c33e4d62
institution Directory Open Access Journal
issn 2338-2287
language English
last_indexed 2024-04-13T21:30:52Z
publishDate 2018-04-01
publisher Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia
record_format Article
series Electronic Journal of Graph Theory and Applications
spelling doaj.art-a0e3c7909b7e4f6fa4d7ad55c33e4d622022-12-22T02:29:10ZengIndonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), IndonesiaElectronic Journal of Graph Theory and Applications2338-22872018-04-0161618310.5614/ejgta.2018.6.1.5106On inclusive distance vertex irregular labelingsMartin Baca0Andrea Semanicova-Fenovcikova1S. Slamin2Kiki A. Sugeng3Department of Applied Mathematics and Informatics, Technical University, Letna 9, Kosice, SlovakiaDepartment of Applied Mathematics and Informatics, Technical University, Letna 9, Kosice, SlovakiaInformation System Study Program, University of Jember, Jl. Kalimantan 37 Jember, IndonesiaDepartment of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia<p>For a simple graph <span class="math"><em>G</em></span>, a vertex labeling <span class="math"><em>f</em> : <em>V</em>(<em>G</em>) → {1, 2, ..., <em>k</em>}</span> is called a <span class="math"><em>k</em></span>-labeling. The weight of a vertex <span class="math"><em>v</em></span>, denoted by <span class="math"><em>w</em><em>t</em><sub><em>f</em></sub>(<em>v</em>)</span> is the sum of all vertex labels of vertices in the closed neighborhood of the vertex <span class="math"><em>v</em></span>. A vertex <span class="math"><em>k</em></span>-labeling is defined to be an inclusive distance vertex irregular distance <span class="math"><em>k</em></span>-labeling of <span class="math"><em>G</em></span> if for every two different vertices <span class="math"><em>u</em></span> and <span class="math"><em>v</em></span> there is <span class="math"><em>w</em><em>t</em><sub><em>f</em></sub>(<em>u</em>) ≠ <em>w</em><em>t</em><sub><em>f</em></sub>(<em>v</em>)</span>. The minimum <span class="math"><em>k</em></span> for which the graph <span class="math"><em>G</em></span> has a vertex irregular distance <span class="math"><em>k</em></span>-labeling is called the inclusive distance vertex irregularity strength of <span class="math"><em>G</em></span>. In this paper we establish a lower bound of the inclusive distance vertex irregularity strength for any graph and determine the exact value of this parameter for several families of graphs.</p>https://www.ejgta.org/index.php/ejgta/article/view/463inclusive distance vertex irregular labeling, inclusive distance vertex irregularity strength
spellingShingle Martin Baca
Andrea Semanicova-Fenovcikova
S. Slamin
Kiki A. Sugeng
On inclusive distance vertex irregular labelings
Electronic Journal of Graph Theory and Applications
inclusive distance vertex irregular labeling, inclusive distance vertex irregularity strength
title On inclusive distance vertex irregular labelings
title_full On inclusive distance vertex irregular labelings
title_fullStr On inclusive distance vertex irregular labelings
title_full_unstemmed On inclusive distance vertex irregular labelings
title_short On inclusive distance vertex irregular labelings
title_sort on inclusive distance vertex irregular labelings
topic inclusive distance vertex irregular labeling, inclusive distance vertex irregularity strength
url https://www.ejgta.org/index.php/ejgta/article/view/463
work_keys_str_mv AT martinbaca oninclusivedistancevertexirregularlabelings
AT andreasemanicovafenovcikova oninclusivedistancevertexirregularlabelings
AT sslamin oninclusivedistancevertexirregularlabelings
AT kikiasugeng oninclusivedistancevertexirregularlabelings