On the Non-Approximate Successive Cancellation Decoding of Binary Polar Codes With Medium Kernels

Polar codes constructed by large kernels can attain better finite length performance than those originating from Ar&#x0131;kan&#x2019;s <inline-formula> <tex-math notation="LaTeX">$2\times 2$ </tex-math></inline-formula> kernel. However, the successive cance...

Full description

Bibliographic Details
Main Authors: Zhiliang Huang, Zongsheng Jiang, Shuihong Zhou, Xiaoyan Zhang
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10214576/
_version_ 1797739772054077440
author Zhiliang Huang
Zongsheng Jiang
Shuihong Zhou
Xiaoyan Zhang
author_facet Zhiliang Huang
Zongsheng Jiang
Shuihong Zhou
Xiaoyan Zhang
author_sort Zhiliang Huang
collection DOAJ
description Polar codes constructed by large kernels can attain better finite length performance than those originating from Ar&#x0131;kan&#x2019;s <inline-formula> <tex-math notation="LaTeX">$2\times 2$ </tex-math></inline-formula> kernel. However, the successive cancellation (SC) decoding for these polar codes is impractical even for relatively small kernel size of <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> because complexity of the kernel computation grows exponentially with <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula>. This research shows when <inline-formula> <tex-math notation="LaTeX">$m&gt;2$ </tex-math></inline-formula>, there exists a large amount of like terms in the kernel computation which yields a ground for facilitating the decoding. By transferring the kernel computation from the probability domain to the likelihood ratio domain (<inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula>-domain), the so- called <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula>-formula method provides an efficient way to combine the like terms in the kernel computation for kernels up to size 11. However, the <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula>-formula method becomes intractable for kernel size beyond 11. To further reduce the computational complexity, this paper proposes a <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-formula method which transforms the kernel computation into the probability pair domain (<inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-domain). Advanced from the <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula>-domain, the numerator and denominator of the likelihood ratio are considered separately, which eases the restrictions of combining like terms. The <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-formula method can combine much more like terms resulting in a significant reduction on the number of sub-formulas for medium kernels (<inline-formula> <tex-math notation="LaTeX">$m\leq 16$ </tex-math></inline-formula>). Furthermore, in the <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-domain, sub-formulas become regular and there exist many common sub-formulas whose computations can be shared. Being able to handle kernels of size up to 16, we show that the <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-formula based SC decoding achieves a significant complexity reduction over the existing non-approximate SC decoding (the <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula>-formula based SC decoding).
first_indexed 2024-03-12T14:02:57Z
format Article
id doaj.art-a0ea8107292d4754b4a921e1c22d6add
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-03-12T14:02:57Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-a0ea8107292d4754b4a921e1c22d6add2023-08-21T23:00:42ZengIEEEIEEE Access2169-35362023-01-0111875058751910.1109/ACCESS.2023.330432910214576On the Non-Approximate Successive Cancellation Decoding of Binary Polar Codes With Medium KernelsZhiliang Huang0https://orcid.org/0000-0003-0876-063XZongsheng Jiang1Shuihong Zhou2Xiaoyan Zhang3School of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, ChinaSchool of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, ChinaSchool of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, ChinaSchool of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua, ChinaPolar codes constructed by large kernels can attain better finite length performance than those originating from Ar&#x0131;kan&#x2019;s <inline-formula> <tex-math notation="LaTeX">$2\times 2$ </tex-math></inline-formula> kernel. However, the successive cancellation (SC) decoding for these polar codes is impractical even for relatively small kernel size of <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> because complexity of the kernel computation grows exponentially with <inline-formula> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula>. This research shows when <inline-formula> <tex-math notation="LaTeX">$m&gt;2$ </tex-math></inline-formula>, there exists a large amount of like terms in the kernel computation which yields a ground for facilitating the decoding. By transferring the kernel computation from the probability domain to the likelihood ratio domain (<inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula>-domain), the so- called <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula>-formula method provides an efficient way to combine the like terms in the kernel computation for kernels up to size 11. However, the <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula>-formula method becomes intractable for kernel size beyond 11. To further reduce the computational complexity, this paper proposes a <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-formula method which transforms the kernel computation into the probability pair domain (<inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-domain). Advanced from the <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula>-domain, the numerator and denominator of the likelihood ratio are considered separately, which eases the restrictions of combining like terms. The <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-formula method can combine much more like terms resulting in a significant reduction on the number of sub-formulas for medium kernels (<inline-formula> <tex-math notation="LaTeX">$m\leq 16$ </tex-math></inline-formula>). Furthermore, in the <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-domain, sub-formulas become regular and there exist many common sub-formulas whose computations can be shared. Being able to handle kernels of size up to 16, we show that the <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-formula based SC decoding achieves a significant complexity reduction over the existing non-approximate SC decoding (the <inline-formula> <tex-math notation="LaTeX">$l$ </tex-math></inline-formula>-formula based SC decoding).https://ieeexplore.ieee.org/document/10214576/Large kernelmedium kernelpolar codesSC decodingW-formula
spellingShingle Zhiliang Huang
Zongsheng Jiang
Shuihong Zhou
Xiaoyan Zhang
On the Non-Approximate Successive Cancellation Decoding of Binary Polar Codes With Medium Kernels
IEEE Access
Large kernel
medium kernel
polar codes
SC decoding
W-formula
title On the Non-Approximate Successive Cancellation Decoding of Binary Polar Codes With Medium Kernels
title_full On the Non-Approximate Successive Cancellation Decoding of Binary Polar Codes With Medium Kernels
title_fullStr On the Non-Approximate Successive Cancellation Decoding of Binary Polar Codes With Medium Kernels
title_full_unstemmed On the Non-Approximate Successive Cancellation Decoding of Binary Polar Codes With Medium Kernels
title_short On the Non-Approximate Successive Cancellation Decoding of Binary Polar Codes With Medium Kernels
title_sort on the non approximate successive cancellation decoding of binary polar codes with medium kernels
topic Large kernel
medium kernel
polar codes
SC decoding
W-formula
url https://ieeexplore.ieee.org/document/10214576/
work_keys_str_mv AT zhilianghuang onthenonapproximatesuccessivecancellationdecodingofbinarypolarcodeswithmediumkernels
AT zongshengjiang onthenonapproximatesuccessivecancellationdecodingofbinarypolarcodeswithmediumkernels
AT shuihongzhou onthenonapproximatesuccessivecancellationdecodingofbinarypolarcodeswithmediumkernels
AT xiaoyanzhang onthenonapproximatesuccessivecancellationdecodingofbinarypolarcodeswithmediumkernels