Multiple Cusp Signatures in Ionograms Associated with Rocket-Induced Infrasonic Waves

We are interested in understanding how and when infrasonic waves propagate in the thermosphere, specifying the physical properties of those waves, and understanding how they affect radio wave propagation. We use a combination of traditional ionosonde observations and fixed frequency Doppler sounding...

Full description

Bibliographic Details
Main Authors: Justin Mabie, Terence Bullett
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/13/6/958
Description
Summary:We are interested in understanding how and when infrasonic waves propagate in the thermosphere, specifying the physical properties of those waves, and understanding how they affect radio wave propagation. We use a combination of traditional ionosonde observations and fixed frequency Doppler soundings to make high quality observations of vertically propagating infrasonic waves in the lower thermosphere/bottom side ionosphere. The presented results are the first simultaneous observations of infrasonic wave-induced deformations in ionograms and high-time-resolution observations of corresponding plasma displacements. Deformations in ionospheric echoes, which manifest as additional cusps and range variations, are shown to be caused by infrasonic wave-induced plasma displacements.
ISSN:2073-4433