Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples

When collecting experimental data, the observable may be dichotomous. Sampling (eventually with replacement) thus emulates a Bernoulli trial leading to a binomial proportion. Because the binomial distribution is discrete, the analytical evaluation of the exact confidence interval of the sampled outc...

Full description

Bibliographic Details
Main Author: Lorentz Jäntschi
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/6/1104
Description
Summary:When collecting experimental data, the observable may be dichotomous. Sampling (eventually with replacement) thus emulates a Bernoulli trial leading to a binomial proportion. Because the binomial distribution is discrete, the analytical evaluation of the exact confidence interval of the sampled outcome is a mathematical challenge. This paper proposes three alternative confidence interval calculation methods that are characterized and exemplified.
ISSN:2073-8994