Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples

When collecting experimental data, the observable may be dichotomous. Sampling (eventually with replacement) thus emulates a Bernoulli trial leading to a binomial proportion. Because the binomial distribution is discrete, the analytical evaluation of the exact confidence interval of the sampled outc...

Full description

Bibliographic Details
Main Author: Lorentz Jäntschi
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/6/1104
_version_ 1797482090402414592
author Lorentz Jäntschi
author_facet Lorentz Jäntschi
author_sort Lorentz Jäntschi
collection DOAJ
description When collecting experimental data, the observable may be dichotomous. Sampling (eventually with replacement) thus emulates a Bernoulli trial leading to a binomial proportion. Because the binomial distribution is discrete, the analytical evaluation of the exact confidence interval of the sampled outcome is a mathematical challenge. This paper proposes three alternative confidence interval calculation methods that are characterized and exemplified.
first_indexed 2024-03-09T22:23:19Z
format Article
id doaj.art-a0fdbfc4c0444975b81fbdea6e716bd7
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T22:23:19Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-a0fdbfc4c0444975b81fbdea6e716bd72023-11-23T19:10:54ZengMDPI AGSymmetry2073-89942022-05-01146110410.3390/sym14061104Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and ExamplesLorentz Jäntschi0Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400641 Cluj, RomaniaWhen collecting experimental data, the observable may be dichotomous. Sampling (eventually with replacement) thus emulates a Bernoulli trial leading to a binomial proportion. Because the binomial distribution is discrete, the analytical evaluation of the exact confidence interval of the sampled outcome is a mathematical challenge. This paper proposes three alternative confidence interval calculation methods that are characterized and exemplified.https://www.mdpi.com/2073-8994/14/6/1104binomial distributionbinomial proportionconfidence intervalexact methods
spellingShingle Lorentz Jäntschi
Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples
Symmetry
binomial distribution
binomial proportion
confidence interval
exact methods
title Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples
title_full Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples
title_fullStr Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples
title_full_unstemmed Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples
title_short Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples
title_sort binomial distributed data confidence interval calculation formulas algorithms and examples
topic binomial distribution
binomial proportion
confidence interval
exact methods
url https://www.mdpi.com/2073-8994/14/6/1104
work_keys_str_mv AT lorentzjantschi binomialdistributeddataconfidenceintervalcalculationformulasalgorithmsandexamples