Nitric oxide Does Not Trigger Early Programmed Cell Death Events but May Contribute to Cell-to-Cell Signaling Governing Progression of the Arabidopsis Hypersensitive Response
Nitric oxide (NO) has been suggested to play a role in the hypersensitive response (HR). Single- and double-label fluorescence microscopy experiments were conducted using Arabidopsis leaves infected with Pseudomonas syringae pv. tomato DC3000 carrying either avrB or avrRpt2. Kinetics of NO productio...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The American Phytopathological Society
2003-11-01
|
Series: | Molecular Plant-Microbe Interactions |
Subjects: | |
Online Access: | https://apsjournals.apsnet.org/doi/10.1094/MPMI.2003.16.11.962 |
_version_ | 1818646862184316928 |
---|---|
author | Chu Zhang Kirk J. Czymmek Allan D. Shapiro |
author_facet | Chu Zhang Kirk J. Czymmek Allan D. Shapiro |
author_sort | Chu Zhang |
collection | DOAJ |
description | Nitric oxide (NO) has been suggested to play a role in the hypersensitive response (HR). Single- and double-label fluorescence microscopy experiments were conducted using Arabidopsis leaves infected with Pseudomonas syringae pv. tomato DC3000 carrying either avrB or avrRpt2. Kinetics of NO production were followed by measurement of green 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) triazole fluorescence in leaves coinfiltrated with DAF-FM diacetate. Kinetics of hypersensitive cell death were followed by measurement of cytoplasmic red fluorescence following internalization of coinfiltrated propidium iodide through compromised plasma membranes. Neither NO accumulation nor cell death was seen until approximately 3 h postinoculation of Columbia leaves with DC3000·avrB or approximately 5.5 h post-inoculation with DC3000·avrRpt2. Subsequent NO accumulation kinetics closely paralleled HR progression in both Columbia and ndr1-1 mutant plants. These data established that NO accumulation does not happen sufficiently early for NO to be a signaling component controlling HR triggering. NO accumulation did contribute to the HR, as proven by an approximately 1-h delay in cell death kinetics caused by an NO scavenger or an NO synthase inhibitor. NO was first seen as punctate foci at the cell surface. Subsequent NO accumulation patterns were consistent with NO being an intercellular signal that functions in cell-to-cell spread of the HR. |
first_indexed | 2024-12-17T00:53:23Z |
format | Article |
id | doaj.art-a0fe0fcc989448cf8c071f90fe27f58e |
institution | Directory Open Access Journal |
issn | 0894-0282 1943-7706 |
language | English |
last_indexed | 2024-12-17T00:53:23Z |
publishDate | 2003-11-01 |
publisher | The American Phytopathological Society |
record_format | Article |
series | Molecular Plant-Microbe Interactions |
spelling | doaj.art-a0fe0fcc989448cf8c071f90fe27f58e2022-12-21T22:09:42ZengThe American Phytopathological SocietyMolecular Plant-Microbe Interactions0894-02821943-77062003-11-01161196297210.1094/MPMI.2003.16.11.962Nitric oxide Does Not Trigger Early Programmed Cell Death Events but May Contribute to Cell-to-Cell Signaling Governing Progression of the Arabidopsis Hypersensitive ResponseChu ZhangKirk J. CzymmekAllan D. ShapiroNitric oxide (NO) has been suggested to play a role in the hypersensitive response (HR). Single- and double-label fluorescence microscopy experiments were conducted using Arabidopsis leaves infected with Pseudomonas syringae pv. tomato DC3000 carrying either avrB or avrRpt2. Kinetics of NO production were followed by measurement of green 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) triazole fluorescence in leaves coinfiltrated with DAF-FM diacetate. Kinetics of hypersensitive cell death were followed by measurement of cytoplasmic red fluorescence following internalization of coinfiltrated propidium iodide through compromised plasma membranes. Neither NO accumulation nor cell death was seen until approximately 3 h postinoculation of Columbia leaves with DC3000·avrB or approximately 5.5 h post-inoculation with DC3000·avrRpt2. Subsequent NO accumulation kinetics closely paralleled HR progression in both Columbia and ndr1-1 mutant plants. These data established that NO accumulation does not happen sufficiently early for NO to be a signaling component controlling HR triggering. NO accumulation did contribute to the HR, as proven by an approximately 1-h delay in cell death kinetics caused by an NO scavenger or an NO synthase inhibitor. NO was first seen as punctate foci at the cell surface. Subsequent NO accumulation patterns were consistent with NO being an intercellular signal that functions in cell-to-cell spread of the HR.https://apsjournals.apsnet.org/doi/10.1094/MPMI.2003.16.11.962disease resistancesignal transduction |
spellingShingle | Chu Zhang Kirk J. Czymmek Allan D. Shapiro Nitric oxide Does Not Trigger Early Programmed Cell Death Events but May Contribute to Cell-to-Cell Signaling Governing Progression of the Arabidopsis Hypersensitive Response Molecular Plant-Microbe Interactions disease resistance signal transduction |
title | Nitric oxide Does Not Trigger Early Programmed Cell Death Events but May Contribute to Cell-to-Cell Signaling Governing Progression of the Arabidopsis Hypersensitive Response |
title_full | Nitric oxide Does Not Trigger Early Programmed Cell Death Events but May Contribute to Cell-to-Cell Signaling Governing Progression of the Arabidopsis Hypersensitive Response |
title_fullStr | Nitric oxide Does Not Trigger Early Programmed Cell Death Events but May Contribute to Cell-to-Cell Signaling Governing Progression of the Arabidopsis Hypersensitive Response |
title_full_unstemmed | Nitric oxide Does Not Trigger Early Programmed Cell Death Events but May Contribute to Cell-to-Cell Signaling Governing Progression of the Arabidopsis Hypersensitive Response |
title_short | Nitric oxide Does Not Trigger Early Programmed Cell Death Events but May Contribute to Cell-to-Cell Signaling Governing Progression of the Arabidopsis Hypersensitive Response |
title_sort | nitric oxide does not trigger early programmed cell death events but may contribute to cell to cell signaling governing progression of the arabidopsis hypersensitive response |
topic | disease resistance signal transduction |
url | https://apsjournals.apsnet.org/doi/10.1094/MPMI.2003.16.11.962 |
work_keys_str_mv | AT chuzhang nitricoxidedoesnottriggerearlyprogrammedcelldeatheventsbutmaycontributetocelltocellsignalinggoverningprogressionofthearabidopsishypersensitiveresponse AT kirkjczymmek nitricoxidedoesnottriggerearlyprogrammedcelldeatheventsbutmaycontributetocelltocellsignalinggoverningprogressionofthearabidopsishypersensitiveresponse AT allandshapiro nitricoxidedoesnottriggerearlyprogrammedcelldeatheventsbutmaycontributetocelltocellsignalinggoverningprogressionofthearabidopsishypersensitiveresponse |