Quadratic gravity potentials in de Sitter spacetime from Feynman diagrams

Abstract We employ a manifestly covariant formalism to compute the tree-level amputated Green’s function of non-minimally coupled scalar fields in quadratic gravity in a de Sitter background. We study this Green’s function in the adiabatic limit, and construct the classical Newtonian potential. At s...

Full description

Bibliographic Details
Main Authors: Renata Ferrero, Chris Ripken
Format: Article
Language:English
Published: SpringerOpen 2023-08-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP08(2023)199
Description
Summary:Abstract We employ a manifestly covariant formalism to compute the tree-level amputated Green’s function of non-minimally coupled scalar fields in quadratic gravity in a de Sitter background. We study this Green’s function in the adiabatic limit, and construct the classical Newtonian potential. At short distances, the flat-spacetime Yukawa potential is reproduced, while the curvature gives rise to corrections to the potential at large distances. Beyond the Hubble radius, the potential vanishes identically, in agreement with the causal structure of de Sitter spacetime. For sub-Hubble distances, we investigate whether the modifications to the potential reproduce Modified Newtonian Dynamics.
ISSN:1029-8479