Polysulfone-based Anion Exchange Membranes for Potential Application in Solid Alkaline Fuel Cells
In present research work, anion exchange membranes based on quaternized polysulfone with ammonium cation moieties (QAPSF) were prepared by chloromethylation, amination and alkalization. The chloromethylated polysulfone were characterized by 1HNMR spectroscopy and functionalization degree was determi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Materials and Energy Research Center (MERC)
2015-04-01
|
Series: | Journal of Renewable Energy and Environment |
Subjects: | |
Online Access: | https://www.jree.ir/article_70071_af27b9867d33511ff318d05a7b84f7c3.pdf |
Summary: | In present research work, anion exchange membranes based on quaternized polysulfone with ammonium cation moieties (QAPSF) were prepared by chloromethylation, amination and alkalization. The chloromethylated polysulfone were characterized by 1HNMR spectroscopy and functionalization degree was determined according to peak area integration. Ion transport properties (ionic conductivity, ion exchange capacity, activation energy for ion transport) and water content associated properties (water uptake, swelling ratio, hydrated number) were measured for the prepared anion exchange membranes. The ion exchange capacity for these membranes varied from 0.96 to 1.73 meq/gr while the degree of chloromethylation increased from 82% to 143%. The membrane with IEC value of 1.73 meq/gr showed the highest ionic conductivity in the range of 15.87-34.01 mS/cm at 25-80 °C. The activation energy for ion transport, water uptake and swelling ratio of this membrane were measured to be 11.99 kJ/mol, 37.41% and 14.71%, respectively which demonstrated the reasonable performance of the prepared anion exchange membranes. Based on the obtained results, prepared anion exchange membranes could be proposed as good candidates for solid alkaline fuel cells. |
---|---|
ISSN: | 2423-5547 2423-7469 |