3D Convolutional Neural Network-Based Denoising of Low-Count Whole-Body <sup>18</sup>F-Fluorodeoxyglucose and <sup>89</sup>Zr-Rituximab PET Scans

Acquisition time and injected activity of <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) PET should ideally be reduced. However, this decreases the signal-to-noise ratio (SNR), which impairs the diagnostic value of these PET scans. In addition, <sup>89</sup&g...

Full description

Bibliographic Details
Main Authors: Bart M. de Vries, Sandeep S. V. Golla, Gerben J. C. Zwezerijnen, Otto S. Hoekstra, Yvonne W. S. Jauw, Marc C. Huisman, Guus A. M. S. van Dongen, Willemien C. Menke-van der Houven van Oordt, Josée J. M. Zijlstra-Baalbergen, Liesbet Mesotten, Ronald Boellaard, Maqsood Yaqub
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/12/3/596
_version_ 1797472082128273408
author Bart M. de Vries
Sandeep S. V. Golla
Gerben J. C. Zwezerijnen
Otto S. Hoekstra
Yvonne W. S. Jauw
Marc C. Huisman
Guus A. M. S. van Dongen
Willemien C. Menke-van der Houven van Oordt
Josée J. M. Zijlstra-Baalbergen
Liesbet Mesotten
Ronald Boellaard
Maqsood Yaqub
author_facet Bart M. de Vries
Sandeep S. V. Golla
Gerben J. C. Zwezerijnen
Otto S. Hoekstra
Yvonne W. S. Jauw
Marc C. Huisman
Guus A. M. S. van Dongen
Willemien C. Menke-van der Houven van Oordt
Josée J. M. Zijlstra-Baalbergen
Liesbet Mesotten
Ronald Boellaard
Maqsood Yaqub
author_sort Bart M. de Vries
collection DOAJ
description Acquisition time and injected activity of <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) PET should ideally be reduced. However, this decreases the signal-to-noise ratio (SNR), which impairs the diagnostic value of these PET scans. In addition, <sup>89</sup>Zr-antibody PET is known to have a low SNR. To improve the diagnostic value of these scans, a Convolutional Neural Network (CNN) denoising method is proposed. The aim of this study was therefore to develop CNNs to increase SNR for low-count <sup>18</sup>F-FDG and <sup>89</sup>Zr-antibody PET. Super-low-count, low-count and full-count <sup>18</sup>F-FDG PET scans from 60 primary lung cancer patients and full-count <sup>89</sup>Zr-rituximab PET scans from five patients with non-Hodgkin lymphoma were acquired. CNNs were built to capture the features and to denoise the PET scans. Additionally, Gaussian smoothing (GS) and Bilateral filtering (BF) were evaluated. The performance of the denoising approaches was assessed based on the tumour recovery coefficient (TRC), coefficient of variance (COV; level of noise), and a qualitative assessment by two nuclear medicine physicians. The CNNs had a higher TRC and comparable or lower COV to GS and BF and was also the preferred method of the two observers for both <sup>18</sup>F-FDG and <sup>89</sup>Zr-rituximab PET. The CNNs improved the SNR of low-count <sup>18</sup>F-FDG and <sup>89</sup>Zr-rituximab PET, with almost similar or better clinical performance than the full-count PET, respectively. Additionally, the CNNs showed better performance than GS and BF.
first_indexed 2024-03-09T19:57:12Z
format Article
id doaj.art-a126295b2b554a6f80b62a95d68b22e0
institution Directory Open Access Journal
issn 2075-4418
language English
last_indexed 2024-03-09T19:57:12Z
publishDate 2022-02-01
publisher MDPI AG
record_format Article
series Diagnostics
spelling doaj.art-a126295b2b554a6f80b62a95d68b22e02023-11-24T00:54:35ZengMDPI AGDiagnostics2075-44182022-02-0112359610.3390/diagnostics120305963D Convolutional Neural Network-Based Denoising of Low-Count Whole-Body <sup>18</sup>F-Fluorodeoxyglucose and <sup>89</sup>Zr-Rituximab PET ScansBart M. de Vries0Sandeep S. V. Golla1Gerben J. C. Zwezerijnen2Otto S. Hoekstra3Yvonne W. S. Jauw4Marc C. Huisman5Guus A. M. S. van Dongen6Willemien C. Menke-van der Houven van Oordt7Josée J. M. Zijlstra-Baalbergen8Liesbet Mesotten9Ronald Boellaard10Maqsood Yaqub11Cancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The NetherlandsCancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The NetherlandsCancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The NetherlandsCancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The NetherlandsCancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The NetherlandsCancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The NetherlandsCancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The NetherlandsCancer Center Amsterdam, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The NetherlandsCancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The NetherlandsFaculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, BelgiumCancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The NetherlandsCancer Center Amsterdam, Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 HV Amsterdam, The NetherlandsAcquisition time and injected activity of <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) PET should ideally be reduced. However, this decreases the signal-to-noise ratio (SNR), which impairs the diagnostic value of these PET scans. In addition, <sup>89</sup>Zr-antibody PET is known to have a low SNR. To improve the diagnostic value of these scans, a Convolutional Neural Network (CNN) denoising method is proposed. The aim of this study was therefore to develop CNNs to increase SNR for low-count <sup>18</sup>F-FDG and <sup>89</sup>Zr-antibody PET. Super-low-count, low-count and full-count <sup>18</sup>F-FDG PET scans from 60 primary lung cancer patients and full-count <sup>89</sup>Zr-rituximab PET scans from five patients with non-Hodgkin lymphoma were acquired. CNNs were built to capture the features and to denoise the PET scans. Additionally, Gaussian smoothing (GS) and Bilateral filtering (BF) were evaluated. The performance of the denoising approaches was assessed based on the tumour recovery coefficient (TRC), coefficient of variance (COV; level of noise), and a qualitative assessment by two nuclear medicine physicians. The CNNs had a higher TRC and comparable or lower COV to GS and BF and was also the preferred method of the two observers for both <sup>18</sup>F-FDG and <sup>89</sup>Zr-rituximab PET. The CNNs improved the SNR of low-count <sup>18</sup>F-FDG and <sup>89</sup>Zr-rituximab PET, with almost similar or better clinical performance than the full-count PET, respectively. Additionally, the CNNs showed better performance than GS and BF.https://www.mdpi.com/2075-4418/12/3/596low-countCNNdenoising<sup>18</sup>F-FDG<sup>89</sup>Zr-antibody
spellingShingle Bart M. de Vries
Sandeep S. V. Golla
Gerben J. C. Zwezerijnen
Otto S. Hoekstra
Yvonne W. S. Jauw
Marc C. Huisman
Guus A. M. S. van Dongen
Willemien C. Menke-van der Houven van Oordt
Josée J. M. Zijlstra-Baalbergen
Liesbet Mesotten
Ronald Boellaard
Maqsood Yaqub
3D Convolutional Neural Network-Based Denoising of Low-Count Whole-Body <sup>18</sup>F-Fluorodeoxyglucose and <sup>89</sup>Zr-Rituximab PET Scans
Diagnostics
low-count
CNN
denoising
<sup>18</sup>F-FDG
<sup>89</sup>Zr-antibody
title 3D Convolutional Neural Network-Based Denoising of Low-Count Whole-Body <sup>18</sup>F-Fluorodeoxyglucose and <sup>89</sup>Zr-Rituximab PET Scans
title_full 3D Convolutional Neural Network-Based Denoising of Low-Count Whole-Body <sup>18</sup>F-Fluorodeoxyglucose and <sup>89</sup>Zr-Rituximab PET Scans
title_fullStr 3D Convolutional Neural Network-Based Denoising of Low-Count Whole-Body <sup>18</sup>F-Fluorodeoxyglucose and <sup>89</sup>Zr-Rituximab PET Scans
title_full_unstemmed 3D Convolutional Neural Network-Based Denoising of Low-Count Whole-Body <sup>18</sup>F-Fluorodeoxyglucose and <sup>89</sup>Zr-Rituximab PET Scans
title_short 3D Convolutional Neural Network-Based Denoising of Low-Count Whole-Body <sup>18</sup>F-Fluorodeoxyglucose and <sup>89</sup>Zr-Rituximab PET Scans
title_sort 3d convolutional neural network based denoising of low count whole body sup 18 sup f fluorodeoxyglucose and sup 89 sup zr rituximab pet scans
topic low-count
CNN
denoising
<sup>18</sup>F-FDG
<sup>89</sup>Zr-antibody
url https://www.mdpi.com/2075-4418/12/3/596
work_keys_str_mv AT bartmdevries 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans
AT sandeepsvgolla 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans
AT gerbenjczwezerijnen 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans
AT ottoshoekstra 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans
AT yvonnewsjauw 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans
AT marcchuisman 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans
AT guusamsvandongen 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans
AT willemiencmenkevanderhouvenvanoordt 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans
AT joseejmzijlstrabaalbergen 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans
AT liesbetmesotten 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans
AT ronaldboellaard 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans
AT maqsoodyaqub 3dconvolutionalneuralnetworkbaseddenoisingoflowcountwholebodysup18supffluorodeoxyglucoseandsup89supzrrituximabpetscans