A combination of physics-informed neural networks with the fixed-stress splitting iteration for solving Biot's model
IntroductionBiot's consolidation model in poroelasticity describes the interaction between the fluid and the deformable porous structure. Based on the fixed-stress splitting iterative method proposed by Mikelic et al. (Computat Geosci, 2013), we present a network approach to solve Biot's c...
Main Authors: | Mingchao Cai, Huipeng Gu, Pengxiang Hong, Jingzhi Li |
---|---|
格式: | Article |
語言: | English |
出版: |
Frontiers Media S.A.
2023-08-01
|
叢編: | Frontiers in Applied Mathematics and Statistics |
主題: | |
在線閱讀: | https://www.frontiersin.org/articles/10.3389/fams.2023.1206500/full |
相似書籍
-
Estimation of the Biot Number Using Genetic Algorithms: Application for the Drying Process
由: Krzysztof Górnicki, et al.
出版: (2019-07-01) -
An alternating iteration algorithm for solving the split equality fixed point problem with L-Lipschitz and quasi-pseudo-contractive mappings
由: Meixia Li, et al.
出版: (2019-09-01) -
Some fixed point iteration procedures
由: B. E. Rhoades
出版: (1991-01-01) -
Anisotropic error estimator for the Stokes–Biot system
由: Houédanou Koffi Wilfrid
出版: (2024-12-01) -
The Influence of Rate of Change in Confining and Pore Pressure on Values of the Modulus of Compressibility of the Rock Skeleton and Biot’s Coefficient
由: Andrzej Nowakowski
出版: (2021-05-01)